Proving that e^{ikx} is primary with weight (h=\hbar = \alpha k^2/4)

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Weight
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
I can't understand the line of reasoning used by David Tong (on its lectures of CFT).
Relevant Equations
.'
1676395218266.png


Where

##:## really means normal ordered, in the sense that ##:A(w)B(z): = \lim_{w \to z} \left ( A(w)B(z) - \langle A(w)B(z) \rangle \right )##

##\partial X(z) = \frac{\partial X(z)}{\partial z}##

How do we go form the first line to the second one?? I am not understanding it!

it seems to me that we start with
$$\partial X(z) : X(w)^n : = \partial X(z) : X(w)^{n-1} X(w) :$$
Then, for some reason

$$\partial X(z) : X(w)^{n-1} X(w) : \rightarrow n X(w)^{n-1} :\partial X(z) X(w): $$

Since

$$: \partial X(z) X(w) = \frac{-\alpha'}{2 (z-w)} $$

We got the answer, but how?
 
Physics news on Phys.org
You must use Wick theorem, which is the same as in ordinary QFT.
 
  • Care
Likes LCSphysicist
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top