Proving that the incident intensity is not the same as the sum of others

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Intensity Sum
AI Thread Summary
The discussion focuses on the relationship between the coefficients of reflected and transmitted electric fields, denoted as R and T, and their corresponding intensity fractions r and t. The user successfully derived the relationships r = R^2 and t = nT^2, where n is the index of refraction of the second medium. However, confusion arises when attempting to prove that the sum of the reflected and transmitted intensities does not equal the incident intensity, despite using this assumption to derive the relations. The user references external material suggesting that the reflected and transmitted intensities do indeed sum to the incident intensity, questioning their interpretation of the problem. Clarification is sought on how to reconcile these findings and prove the necessary relations.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
I was supposed to find the relation among the coefficients $T$ and $R$ which represent the amplitude of the reflected electric field and the transmitted electric field respectively, that is, $$E_{R} = E_{i} R, E_{T} = E_{i} T$$ as well as the coefficients $t$ and $r$, that represent the fractional part of the intensity incident, that is, $$I_{R} = I_{i} r, I_{T} = I_{i} t$$

In fact, assuming that the first medium is the air/vacuum, I was able to deduce correctly the relations $$r = R^2, t = nT^2$$ where $n$ is the index of refraction of the second medium.

After doing so, I should be able to show that the sum of the intensities of the reflected and the transmitted wave is not equal to the intensity of the incident wave. The main problem is that I used exactly this to drive my relations! That is:

$$S_i = S_t + S_r \implies \frac{B_i E_i}{\mu_1} = \frac{B_t E_t}{\mu_2} + \frac{B_r E_r}{\mu_1}$$
$$B = E/v \implies \frac{1}{\mu_1} = \frac{R^2}{\mu_1} + \frac{T^2 c}{c/n \cdot \mu_2}$$
$$ \mu_{1} \approx \mu_{2} \implies 1 = R^2 + n T^2$$

where I now call $r = R^2, t = n T^2$

So I think you can see why I am confused. How am I supposed to prove the relations between $r$, $t$, $R$, $T$; and how do I prove that the intensities are in fact not equal?
 
Physics news on Phys.org
Herculi said:
Homework Statement:: .
Relevant Equations:: .

I was supposed to find the relation among the coefficients $T$ and $R$ which represent the amplitude of the reflected electric field and the transmitted electric field respectively, that is, $$E_{R} = E_{i} R, E_{T} = E_{i} T$$ as well as the coefficients $t$ and $r$, that represent the fractional part of the intensity incident, that is, $$I_{R} = I_{i} r, I_{T} = I_{i} t$$

In fact, assuming that the first medium is the air/vacuum, I was able to deduce correctly the relations $$r = R^2, t = nT^2$$ where $n$ is the index of refraction of the second medium.

After doing so, I should be able to show that the sum of the intensities of the reflected and the transmitted wave is not equal to the intensity of the incident wave. The main problem is that I used exactly this to drive my relations! That is:

$$S_i = S_t + S_r \implies \frac{B_i E_i}{\mu_1} = \frac{B_t E_t}{\mu_2} + \frac{B_r E_r}{\mu_1}$$
$$B = E/v \implies \frac{1}{\mu_1} = \frac{R^2}{\mu_1} + \frac{T^2 c}{c/n \cdot \mu_2}$$
$$ \mu_{1} \approx \mu_{2} \implies 1 = R^2 + n T^2$$

where I now call $r = R^2, t = n T^2$

So I think you can see why I am confused. How am I supposed to prove the relations between $r$, $t$, $R$, $T$; and how do I prove that the intensities are in fact not equal?
According to (1232) onwards at https://farside.ph.utexas.edu/teaching/em/lectures/node104.html the reflected and transmitted intensities do add up to the incident.
The notation is a little different, using R, T where you have r, t.

Are you sure you are reading the question correctly?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top