DeadOriginal
- 274
- 2
Homework Statement
Let \{a_{n,k}:n,k\in\mathbb{N}\}\subseteq[0,\infty). Prove that \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}a_{n,k}=\sum\limits_{k=0}^{\infty}\sum\limits_{n=k}^{\infty}a_{n,k}.
Homework Equations
The Attempt at a Solution
I am pretty certain that the claim is true because when I expand them out I get
\sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}a_{n,k}=a_{0,0}+a_{1,0}+a_{1,1}+a_{2,0}+a_{2,1}+a_{2,2}+... and
\sum\limits_{k=0}^{\infty}\sum\limits_{n=k}^{\infty}a_{n,k}=a_{0,0}+a_{1,0}+a_{2,0}+...+a_{1,1}+a_{2,1}+...
which look to me like reorderings of each other. The problem is I am not sure about how I should approach proving that they are in fact equal.