Proving the Commutation Relation for Quantized Boson in a One-Dimensional Box

  • Thread starter Thread starter Hill
  • Start date Start date
  • Tags Tags
    quantized
Hill
Messages
735
Reaction score
575
Homework Statement
Show for a boson particle in a box of volume ##V## that $$\frac 1 V \sum_{\mathbf{pq}} e^{i(\mathbf{px}-\mathbf{qy})}[\hat a_{\mathbf p},\hat a^\dagger_{\mathbf q}]=\delta^{(3)}(\mathbf x - \mathbf y)$$
Relevant Equations
##[\hat a_{\mathbf p},\hat a^\dagger_{\mathbf q}]=\delta_{\mathbf{pq}}##
To simplify, I consider a one-dimensional box of the size L. I need to show in this case that
$$\frac 1 L \sum_{pq} e^{i(px-qy)}[\hat a_p,\hat a^\dagger_q]=\delta(x -y)$$
With the commutation relation above, it becomes
$$\frac 1 L \sum_p e^{ip(x-y)}=\delta(x -y)$$
p is quantized: ##p_m=\frac {2\pi m} L##

So I need to show that
$$\frac 1 L \sum_m e^{i \frac {2\pi m} L (x-y)}=\delta(x -y)$$
If ##x \neq y## the sum is ##0##, but I don't know how to proceed otherwise.
A hint?
 
Last edited:
Physics news on Phys.org
Got it.

##\langle x|p \rangle= \frac 1 {\sqrt L} e^{ipx}##
and
##\langle p|y \rangle= \frac 1 {\sqrt L} e^{-ipy}##

OOH,
##\langle x|y \rangle = \delta(x-y)##

OTOH, inserting the resolution of identity,
##\langle x|y \rangle = \sum_p \langle x|p \rangle \langle p|y \rangle=\frac 1 L \sum_p e^{ip(x-y)}##

Thus,
##\frac 1 L \sum_p e^{ip(x-y)}=\delta(x-y)##
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top