Proving the Commutation Relation for Quantized Boson in a One-Dimensional Box

  • Thread starter Thread starter Hill
  • Start date Start date
  • Tags Tags
    quantized
Hill
Messages
735
Reaction score
575
Homework Statement
Show for a boson particle in a box of volume ##V## that $$\frac 1 V \sum_{\mathbf{pq}} e^{i(\mathbf{px}-\mathbf{qy})}[\hat a_{\mathbf p},\hat a^\dagger_{\mathbf q}]=\delta^{(3)}(\mathbf x - \mathbf y)$$
Relevant Equations
##[\hat a_{\mathbf p},\hat a^\dagger_{\mathbf q}]=\delta_{\mathbf{pq}}##
To simplify, I consider a one-dimensional box of the size L. I need to show in this case that
$$\frac 1 L \sum_{pq} e^{i(px-qy)}[\hat a_p,\hat a^\dagger_q]=\delta(x -y)$$
With the commutation relation above, it becomes
$$\frac 1 L \sum_p e^{ip(x-y)}=\delta(x -y)$$
p is quantized: ##p_m=\frac {2\pi m} L##

So I need to show that
$$\frac 1 L \sum_m e^{i \frac {2\pi m} L (x-y)}=\delta(x -y)$$
If ##x \neq y## the sum is ##0##, but I don't know how to proceed otherwise.
A hint?
 
Last edited:
Physics news on Phys.org
Got it.

##\langle x|p \rangle= \frac 1 {\sqrt L} e^{ipx}##
and
##\langle p|y \rangle= \frac 1 {\sqrt L} e^{-ipy}##

OOH,
##\langle x|y \rangle = \delta(x-y)##

OTOH, inserting the resolution of identity,
##\langle x|y \rangle = \sum_p \langle x|p \rangle \langle p|y \rangle=\frac 1 L \sum_p e^{ip(x-y)}##

Thus,
##\frac 1 L \sum_p e^{ip(x-y)}=\delta(x-y)##
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top