Proving the Formula for Determinants by Induction

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Determinant Formula
Click For Summary
SUMMARY

This discussion focuses on proving the formula for determinants of a specific matrix structure defined as \( m_n \) for \( n \geq 1 \). The formula is established as \( \det (\lambda u_n - m_n) = \lambda^n + \sum_{i=0}^{n-1} a_i \lambda^i \), utilizing the Laplace theorem and mathematical induction. The participants clarify the base case for \( n=2 \) and confirm the inductive hypothesis, ensuring the formula holds for all natural numbers \( n \). The discussion emphasizes the importance of correctly defining the matrix for \( n=1 \) and the subsequent steps in the inductive proof.

PREREQUISITES
  • Understanding of determinants and matrix operations
  • Familiarity with Laplace expansion for determinants
  • Knowledge of mathematical induction principles
  • Basic linear algebra concepts, particularly related to matrices
NEXT STEPS
  • Study the properties of determinants in linear algebra
  • Learn about the Laplace expansion in detail
  • Explore mathematical induction techniques and their applications
  • Investigate the structure and properties of triangular matrices
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in understanding determinants and their proofs through induction.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey!

Let $\mathbb{K}$ be a field and let $1\leq n\in \mathbb{N}$. Let $a_0, \ldots , a_{n-1}\in \mathbb{K}$ and let $m_n\in M_n(\mathbb{K})$ be given by \begin{equation*}m_n:=\begin{pmatrix}0 & 0 & \ldots & 0 & -a_0 \\ 1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \ldots & 0 & 1 & -a_{n-1}\end{pmatrix}\end{equation*}

I want to show that for $\lambda\in \mathbb{K}$ it holds that $\displaystyle{\det (\lambda u_n-m_n) =\lambda^n+\sum_{i=0}^{n-1}a_i \lambda^i}$. First I applied the Laplace theorem to show that the formula bust be this one:
\begin{equation*}\det (\lambda u_n-m_n)=\begin{vmatrix}\lambda & 0 & \ldots & 0 & a_0 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ldots & 0 & -1 & \lambda+a_{n-1}\end{vmatrix}\end{equation*}
Laplace as for the first row:
\begin{equation*}\det (\lambda u_n-m_n)=\begin{vmatrix}\lambda & 0 & \ldots & 0 & a_0 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ldots & 0 & -1 & \lambda+a_{n-1}\end{vmatrix}=\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^{n+1}a_0\begin{vmatrix}-1 & \lambda & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda \\ 0 & \ldots & 0 & -1 \end{vmatrix}\end{equation*}
The matrix $\begin{pmatrix}-1 & \lambda & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda \\ 0 & \ldots & 0 & -1 \end{pmatrix}$ is a triangular matrix, so the determiannt is the product of the diagonal elements, i.e. $(-1)^{n-1}$.

So we get \begin{align*}\det (\lambda u_n-m_n)&=\begin{vmatrix}\lambda & 0 & \ldots & 0 & a_0 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ldots & 0 & -1 & \lambda+a_{n-1}\end{vmatrix} =\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^{n+1}a_0(-1)^{n-1}\\ & =\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^{2n}a_0 =\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+a_0\end{align*}
We expand again as for the first row:
\begin{align*}\det (\lambda u_n-m_n)&=\lambda \left (\lambda \begin{vmatrix} \lambda & 0 & a_2 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^na_1\begin{vmatrix} -1 & \ddots & 0 \\ \ddots & \ddots & \lambda \\ \ldots & 0 & -1 \end{vmatrix}\right )+a_0\\ & =\lambda \left (\lambda \begin{vmatrix} \lambda & 0 & a_2 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^na_1(-1)^{n-2}\right )+a_0 \\ & =\lambda \left (\lambda \begin{vmatrix} \lambda & 0 & a_2 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^{2n-2}a_1\right )+a_0 \\ & =\lambda^2 \begin{vmatrix} \lambda & 0 & a_2 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+ a_1 \lambda+a_0\end{align*}
We expand again as for the first row:
\begin{align*}\det (\lambda u_n-m_n)&=\lambda^2 \left (\lambda \begin{vmatrix} \lambda & 0 & a_3 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^{n-1}a_2\begin{vmatrix} -1 & \ddots & 0 \\ \ddots & \ddots & \lambda \\ \ldots & 0 & -1 \end{vmatrix}\right )+a_1\lambda +a_0\\ & =\lambda^2 \left (\lambda \begin{vmatrix} \lambda & 0 & a_3 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^{n-1}a_2(-1)^{n-3}\right )+a_1\lambda +a_0 \\ & =\lambda^2 \left (\lambda \begin{vmatrix} \lambda & 0 & a_3 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+(-1)^{2n-4}a_2\right )+a_1\lambda +a_0 \\ & =\lambda^3 \begin{vmatrix} \lambda & 0 & a_3 \\ \ddots & \lambda & \vdots \\ 0 & -1 & \lambda+a_{n-1}\end{vmatrix}+a_2\lambda^2+a_1\lambda +a_0\end{align*}
If we aply the Laplace explansion several times, we see that the formula is:
\begin{equation*}\det (\lambda u_n-m_n) =\lambda^n+\sum_{i=0}^{n-1}a_i \lambda^i\end{equation*}

Now we show that this formula is true using induction. (Is the way I do that correct?)

At the base case we have $n=1$, or not? But how is the matrix for $n=1$ ? Do we have that \begin{equation*}\det (\lambda u_1-m_1)=\begin{vmatrix}\lambda \end{vmatrix}=\lambda\end{equation*} ? But then the formula wouldn't hold, would it?

:unsure:
 
Physics news on Phys.org
mathmari said:
At the base case we have $n=1$, or not? But how is the matrix for $n=1$ ? Do we have that \begin{equation*}\det (\lambda u_1-m_1)=\begin{vmatrix}\lambda \end{vmatrix}=\lambda\end{equation*} ? But then the formula wouldn't hold, would it?
The question says "let $1\leq n\in \mathbb{N}$", but the matrix $m_n$ does not appear to be defined when $n=1$. In fact, $a_1$ has only one entry, which has to be equal to both $0$ and $-a_0$. I think that the question should have said "let $2\leq n\in \mathbb{N}$" and that you should take the base case to be $n=2$.
 
Opalg said:
The question says "let $1\leq n\in \mathbb{N}$", but the matrix $m_n$ does not appear to be defined when $n=1$. In fact, $a_1$ has only one entry, which has to be equal to both $0$ and $-a_0$. I think that the question should have said "let $2\leq n\in \mathbb{N}$" and that you should take the base case to be $n=2$.

Ahh ok! So we have the following:

Base Case: For $n=2$ we have that \begin{equation*}\det (\lambda u_2-m_2)=\begin{vmatrix}\lambda & a_0\\ -1 & \lambda +a_1 \end{vmatrix}=\lambda(\lambda+a_1)-(-1)a_0=\lambda^2+a_1 \lambda+a_0=\lambda^2+\sum_{i=0}^{1}a_i \lambda^i\end{equation*} and so the formula holds. .

Inductive hypothesis: We assume that the formula holds for $n=k$, i.e. \begin{equation*}\det (\lambda u_k-m_k) =\lambda^k+\sum_{i=0}^{k-1}a_i \lambda^i, \ \ \ \ \ (IH)\end{equation*}

Inductive step: We want to show that the formula hodls also for $n=k+1$, i.e. \begin{equation*}\det (\lambda u_{k+1}-m_{k+1}) =\lambda^{k+1}+\sum_{i=0}^{(k+1)-1}a_i=\lambda^{k+1}+\sum_{i=0}^{k}a_i \lambda^i\end{equation*}
We have that
\begin{equation*}\det (\lambda u_{k+1}-m_{k+1})=\begin{vmatrix}\lambda & 0 & \ldots & 0 & a_0 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}\end{equation*}
Do we expand as for the first row? Then we would get the following:
\begin{equation*}\det (\lambda u_{k+1}-m_{k+1})=\begin{vmatrix}\lambda & 0 & \ldots & 0 & a_0 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}=\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}+(-1)^{k+2}a_0\begin{vmatrix}-1 & \lambda & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda \\ 0 & \ldots & 0 & -1 \end{vmatrix}\end{equation*}

Now the matrix $\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}$ is a $k\times k$ matrix, but is it of the form$\lambda u_{k}-m_{k}$. so that we can use $(IH)$ ? I ask because at the first row we have now $a_1$ instead of $a_0$. Or do we have to amend the formula of (IH) accordingly?

:unsure:
 
The inductive hypothesis should say that the formula holds for every element $(a_0,\ldots,a_{n-1})\in\Bbb{K}^n$. In the inductive argument you start with a $(k+1)\times(k+1)$ matrix whose last column is $(a_0,\ldots,a_{k})\in\Bbb{K}^{k+1}$, and you end up with a $k\times k$ matrix whose last column is $(a_1,\ldots,a_k)$, which is an element of $\Bbb{K}^k$. That is in accordance with the inductive hypothesis. It doesn't matter how the coordinates of that element are labelled.
 
Opalg said:
The inductive hypothesis should say that the formula holds for every element $(a_0,\ldots,a_{n-1})\in\Bbb{K}^n$. In the inductive argument you start with a $(k+1)\times(k+1)$ matrix whose last column is $(a_0,\ldots,a_{k})\in\Bbb{K}^{k+1}$, and you end up with a $k\times k$ matrix whose last column is $(a_1,\ldots,a_k)$, which is an element of $\Bbb{K}^k$. That is in accordance with the inductive hypothesis. It doesn't matter how the coordinates of that element are labelled.

Ah ok! So at the inductive step we have the following:
\begin{equation*}\det (\lambda u_{k+1}-m_{k+1})=\begin{vmatrix}\lambda & 0 & \ldots & 0 & a_0 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}\end{equation*}
We expand as for the first row:
\begin{equation*}\det (\lambda u_{k+1}-m_{k+1})=\begin{vmatrix}\lambda & 0 & \ldots & 0 & a_0 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \lambda & \vdots \\ 0 & \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}=\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}+(-1)^{k+2}a_0\begin{vmatrix}-1 & \lambda & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda \\ 0 & \ldots & 0 & -1 \end{vmatrix}\end{equation*}
The matrix $\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}$ is a $k\times k$ matrix of the form $\lambda u_{k}-m_{k}$. From the $(IH)$ we get that determiannt is equal to $\displaystyle{\lambda^k+\sum_{i=0}^{k-1}a_{i+1} \lambda^i}$.

The matrix $\begin{vmatrix}-1 & \lambda & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda \\ 0 & \ldots & 0 & -1 \end{vmatrix}$ is triangular so the determinant is equal to the product of the diagnal elements, i.e. $(-1)^k$.

So we get:
\begin{align*}\det (\lambda u_{k+1}-m_{k+1})&=\lambda \begin{vmatrix} \lambda & 0 & \vdots & a_1 \\ -1 & \ddots & 0 & \vdots \\ \ddots & \ddots & \lambda & \vdots \\ \ldots & 0 & -1 & \lambda+a_{k}\end{vmatrix}+(-1)^{k+2}a_0\begin{vmatrix}-1 & \lambda & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda \\ 0 & \ldots & 0 & -1 \end{vmatrix} \\ & =\lambda \left (\lambda^k+\sum_{i=0}^{k-1}a_{i+1} \lambda^i\right )+(-1)^{k+2}a_0(-1)^k=\lambda^{k+1}+\lambda\sum_{i=0}^{k-1}a_{i+1} \lambda^i+(-1)^{2k+2}a_0\\ & =\lambda^{k+1}+\lambda\sum_{i=0}^{k-1}a_{i+1} \lambda^i+a_0=\lambda^{k+1}+\sum_{i=0}^{k-1}a_{i+1} \lambda^{i+1}+a_0=\lambda^{k+1}+\sum_{i=1}^{k}a_{i} \lambda^{i}+a_0 \\ & =\lambda^{k+1}+\sum_{i=0}^{k}a_{i} \lambda^{i} \end{align*} Is everything correct? Could we improve something? :unsure:
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K