MHB Proving Vector Subspace $U \notin R^3$

  • Thread starter Thread starter bbelson01
  • Start date Start date
  • Tags Tags
    Subspaces Vector
bbelson01
Messages
6
Reaction score
0
Hi All,

How do I prove that $U=\{(x,y,z)|x \mbox{ is an integer}\}$ is not a subspace of $R^3$?

I understand that I have to show $U$ is closed or not closed under vector addition and scalar multiplication but I'm unsure how I represent $x$ as an integer.

I would say:
let $V=\{v=(x,y,z) \in R^3\}$ a set of vectors in $R^3$.

$v_1 = (x_1, y_1, z_1)$ and $v_2=(x_2, y_2, z_2)$ then $v_1 + v_2=(x_1+x_2, y_1+y_2, z_1+z_2)$ a vector in $U$. $U$ is closed under vector addition.

Now let $c$ be an element of the set of real numbers. Then $cv=c(x,y,z) =(cx, cy, cz)$ which is an element of $U$. So $U$ is closed under scalar multiplication.

This is clearly not right as the question says to show it is NOT a subspace. Where am I going wrong?

Thanks
 
Last edited by a moderator:
Physics news on Phys.org
bbelson01 said:
Hi All,

How do I prove that U={(x,y,z)|x is an integer} is not a subspace of R^3?

I understand that I have to show U is closed or not closed under vector addition and scalar multiplication but I'm unsure how I represent x as an integer.

I would say:
let V={v=(x,y,z) \epsilon R^3} a set of vectors in R^3.

v1 = (x1, y1, z1) and v2=(x2, y2, z2) then v1 + v2=(x1+x2, y1+y2, z1+z2) a vector in U. U is closed under vector addition.

Now let c be an element of the set of real numbers. Then cv=c(x,y,z) =(cx, cy, cz) which is an element of U. So U is closed under scalar multiplication.

This is clearly not right as the question says to show it is NOT a subspace. Where am I going wrong?

Thanks
Think more carefully about the paragraph in red. For (cx,cy,cz) to be an element of U, its first coordinate cx must be an integer. Does that have to be the case?
 
Thank you for your response. That was pretty obvious wasn't it? Ooops.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top