MHB Putting it all together: The Deuteron

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Deuteron
Click For Summary
The discussion revolves around solving a simplified model of the Deuteron using a radial wave equation derived from a potential well. The user seeks to transform the equation into spherical coordinates but struggles with the separation of variables approach, particularly in dropping angular terms under the assumption of spherical symmetry. They express confusion over the resulting equations and the validity of their assumptions regarding the independence of the wave function from angular variables. Additionally, they inquire about the method of setting terms equal to constants in the separation of variables technique and the reasoning behind the choice of these constants. The user is looking for guidance on these mathematical challenges to progress toward finding eigenvalues and eigenvectors.
ognik
Messages
626
Reaction score
2
I would like to take a 'real' ODE where I have some intuition of what it represents, and take it through to eigenvalues and vectors. I chose a highly simplified model of Deuteron from earlier in the text. (later I might try the real thing)

Given $ -\frac{\bar{h}^2}{2M}\nabla^2\psi +V\psi=E\psi , V=V_0 \: for\: 0\le r<a, 0 $ outside

I easily rearranged this to $ \nabla^2\psi+k_1^2\psi=0 $

At this stage the text substitutes $u(r)=r\psi(r)$ and gets the radial wave equation $ \d{^2{u}}{{r}^2}+k_1^2u=0 $

1) Despite the tempting similarity, I can't put $\nabla^2= \pd{^2{}}{{r}^2}=\d{^2{}}{{r}^2} \:for\: \psi(r) $, I know I have to transform the eqtn to spherical cords.

Pls ignore next 2 points for a while, I found a separation of variables approach that I think is what I need.

2) Laplaces eqtn in spherical form is a 3 term eqtn in $ r, \theta, \phi $. If $\psi $ was independent of both angles, I could drop the last 2 terms; probably the book does something like this - I need some help on this please?

3) Then I would be left with $ \pd{}{r}(r^2 \pd{\psi}{r}) $. Although looking promising, when I substitute $\psi=\frac{u(r)}{r}$ and do the differentiations, I do not end up with $ \d{^2{u}}{{r}^2}$ - and the last term would anyway be u/r instead of just u. Clearly I'm missing something?
 
Last edited:
Physics news on Phys.org
ognik said:
I would like to take a 'real' ODE where I have some intuition of what it represents, and take it through to eigenvalues and vectors. I chose a highly simplified model of Deuteron from earlier in the text. (later I might try the real thing)

Given $ -\frac{\bar{h}^2}{2M}\nabla^2\psi +V\psi=E\psi , V=V_0 \: for\: 0\le r<a, 0 $ outside

I easily rearranged this to $ \nabla^2\psi+k_1^2\psi=0 $

At this stage the text substitutes $u(r)=r\psi(r)$ and gets the radial wave equation $ \d{^2{u}}{{r}^2}+k_1^2u=0 $
OK, I need some help now please, because ...

I tried a trial solution of $ \psi =R(r)T(\theta)P(\phi)$
then $\partial\phi/\partial r=R'TP; \partial\phi/\partial \theta=RT'P; \partial\phi/\partial \phi=RTP'; $
Worked this through to get: $ \nabla^2\psi=\frac{1}{R}\d{}{r}(r^2R') +\frac{1}{Tsin\theta } \d{}{\theta}(sin\theta T') + \frac{P''}{Psin^2 \theta } = 0 $

Part A:
1) This is not going to end with $\d{^2{u}}{{r}^2} +k_1 ^2u=0 $, so maybe my idea of using some sort of symmetry to drop the 2 angle terms was right after all, but I am not sure of a valid argument to do that?
- To start with, it's a square well, but we are using spherical cords., so this would make more sense to me if we were thinking of the potential as a sphere?
- The only argument I can think of is geometric, V is given as dependent on r so the V equipotentials by inspection are the set of concentric spheres, but I can't see how $\psi$ is independent of the angles?

2) Undaunted, I tried again to work just the 1st term in r, using $u=r\psi$, but got $u''=2\psi' +r\psi''$ a hint for the correct approach here please?
-------------------
Part B:
Out of interest if I continued my separation approach above, (we haven't done PDEs yet), I gather I could set each term = a constant, Ex: $ \frac{1}{R}\d{}{r}(r^2R')=k_r $

1) Why is that valid, to me it looks like assuming the particular solution = constant?

2) I've no doubt the choice of constant comes from experience etc., what 3 constants are appropriate and why please?
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
29
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K