PV diagram, ranking heat transfer between 4 processes

AI Thread Summary
The discussion focuses on ranking the heat transferred in four thermodynamic processes using a pV diagram. Participants analyze the equations related to thermal energy, work done by the gas, and the first law of thermodynamics. Specific attention is given to calculating the changes in internal energy (ΔEth), work done (Wgas), and the absolute value of heat transfer (|Q|) for the processes, particularly from state 3 to 4. Clarifications are sought on why certain values are presented in specific formats, and the importance of understanding isothermal processes is emphasized. The conversation ultimately aims to resolve discrepancies in the calculations and solidify the understanding of heat transfer in these processes.
HoboBones
Messages
7
Reaction score
1
Homework Statement
Rank the magnitude of the heat transferred with the gas in each of the four processes.
Relevant Equations
First law of thermodynamics
Thermal energy
Ideal gas law
Work done by gas
Work in isothermal
Apologies, made a mistake when posting. Please see below post.
 
Last edited:
Physics news on Phys.org
Problem and pV diagram

Problem: Rank the magnitude of the heat transferred with the gas in each of the four processes.

Screenshot 2022-12-04 at 5.36.46 PM.png

Given pV diagram
Screenshot 2022-12-04 at 5.24.58 PM.png

Attempt at solution with my questions in red

Equations used:


Thermal energy: Eth=3/2nRT
Ideal gas law: pV=nRT
Workby gas=area under curve
Work in isothermal: Wgas,isothermal=nRTln(Vf/Vi)
First law of thermodynamics applied to gases: ΔEth=Q-Wgas

Set up:

From ideal gas law, pV=nRT. Thus,

ΔEth=3/2nRT=3/2pV
Wgas, isothermal=nRTln(Vf/Vi)=pVln(Vf/Vi)
ΔEth=Q-Wgas --> Q=ΔEth+Wgas

Solving for ΔEth, Wgas, and |Q| for the processes: (I don't understand why we are solving for absolute value of Q)

I need some help solving for ΔE, Wgas, and |Q| for process 3->4

Process
ΔEth
Wgas
|Q|
1->2​
-9pV​
-6pV​
15pV​
2->3​
3/2(-pV)​
0​
1.5pV​
3->4​
0pV​
?​
?​
4->5​
3/2(pV)​
pV​
2.5pV​

Here is my attempt at process 3->4

ΔEth3->4 = 3/2(2pV-2pV) = 0 (My professor has the answer as "0pV" and not 0, not sure why?

Wgas,isothermal= area under the curve?

Area of triangle + Area under rectangle = 2pV? (correct answer is -pVln(Vf/Vi)

|Q| = -pVln(2V/V) = 1.4pV (I am not sure how this is the correct answer)

Any help would be much appreciated!
 

Attachments

  • Screenshot 2022-12-04 at 5.24.58 PM.png
    Screenshot 2022-12-04 at 5.24.58 PM.png
    7.1 KB · Views: 114
  • Screenshot 2022-12-04 at 5.34.48 PM.png
    Screenshot 2022-12-04 at 5.34.48 PM.png
    10.4 KB · Views: 106
  • Screenshot 2022-12-04 at 5.35.38 PM.png
    Screenshot 2022-12-04 at 5.35.38 PM.png
    9.3 KB · Views: 101
##dW=pdV.## Replace ##p## using the ideal gas law and integrate. Note that "isothermal" means "constant ##T##."
 
Update, I think I figured it out but not really understanding

For process 3->4,

Wgas,isothermal = area under curve = 1/2bh + Arectangle = 2pV

We can plug in our area into the work in isothermal equation, thus

Wgas,isothermal = -pVln(Vf/Vi) = -2pVln(2V/V)

|Q| = ΔEth(3->4) + Wgas,isothermal = 0pV -2pVln(2V/V) = |-1.386pV| = 1.4pV
 
kuruman said:
##dW=pdV.## Replace ##p## using the ideal gas law and integrate. Note that "isothermal" means "constant ##T##."
She doesn't want us to use integrals unfortunately
 
Integrals was plan A. Plan B says call the heat entering the gas during the isothermal part ##Q_{34}.## Add an extra row to the table that completes the cycle from 5 to 1 with an isochoric process. Calculate the new entries the same way you did step 2 to 3. Now add all 5 elements in each column. Note that ##W_{34}=Q_{34}## so you have one equation and one unknown, ##Q_{34}.## There is no plan C.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top