Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading "Introductory Algebraic Number Theory"by Saban Alaca and Kenneth S. Williams ... and am currently focused on Chapter 1: Integral Domains ...
I need some help with the proof of Theorem 1.2.2 ...
Theorem 1.2.2 reads as follows:
View attachment 6514
https://www.physicsforums.com/attachments/6515
In the above text from Alaca and Williams, we read the following:
"... ... Then the roots of $$f(X)$$ in $$F$$ are $$-ds/p$$ and $$-d^{-1} t $$. But $$d^{-1} t \in D$$ while neither $$a/p$$ nor $$b/p$$ is in $$D$$. Thus no such factorization exists. ... I am unsure of how this argument leads top the conclusion that $$f(X)$$ does not factor into linear factors in $$D[X]$$ ... in other words how does the argument that "" ... $$d^{-1} t \in D$$ while neither $$a/p$$ nor $$b/p$$ is in $$D$$ ... "lead to the conclusion that no such factorization exists. ...
Indeed ... in particular ... how does the statement "neither $$a/p$$ nor $$b/p$$ is in $$D$$" have meaning in the assumed factorization $$f(X) = (cX + s) ( dX + t )$$ ... ... ? ... What is the exact point being made about the assumed factorization ... ?I am also a little unsure of what is going on when Alaca and Williams change or swap between $$D[X]$$ and $$F[x]$$ ...Can someone help with an explanation ...
Help will be appreciated ...
Peter
I need some help with the proof of Theorem 1.2.2 ...
Theorem 1.2.2 reads as follows:
View attachment 6514
https://www.physicsforums.com/attachments/6515
In the above text from Alaca and Williams, we read the following:
"... ... Then the roots of $$f(X)$$ in $$F$$ are $$-ds/p$$ and $$-d^{-1} t $$. But $$d^{-1} t \in D$$ while neither $$a/p$$ nor $$b/p$$ is in $$D$$. Thus no such factorization exists. ... I am unsure of how this argument leads top the conclusion that $$f(X)$$ does not factor into linear factors in $$D[X]$$ ... in other words how does the argument that "" ... $$d^{-1} t \in D$$ while neither $$a/p$$ nor $$b/p$$ is in $$D$$ ... "lead to the conclusion that no such factorization exists. ...
Indeed ... in particular ... how does the statement "neither $$a/p$$ nor $$b/p$$ is in $$D$$" have meaning in the assumed factorization $$f(X) = (cX + s) ( dX + t )$$ ... ... ? ... What is the exact point being made about the assumed factorization ... ?I am also a little unsure of what is going on when Alaca and Williams change or swap between $$D[X]$$ and $$F[x]$$ ...Can someone help with an explanation ...
Help will be appreciated ...
Peter
Last edited: