I Quality of rational approximations

  • I
  • Thread starter Thread starter Vanadium 50
  • Start date Start date
  • Tags Tags
    Quality Rational
Vanadium 50
Staff Emeritus
Science Advisor
Education Advisor
Gold Member
Messages
35,003
Reaction score
21,702
22/7 is a very good approximation for π. Sqrt(2) doesn’t do that well until 99/70 and e doesn’t do that well until 193/71. 355/113 is even better.

Is there some reason for this? Perhaps geometrical? Why do the ratios of small integers work better for π than other numbers? Or is it just coincidence? ("Gotta be something...")
 
Mathematics news on Phys.org
The pattern of continued fractions?
 
Sure, but e has one too. What's special, if anythnig, about pi?
 
If you want to keep the denominators of the rationals somewhat small, then algebraic numbers are not well approximated by rationals.
https://en.wikipedia.org/wiki/Roth's_theorem

ps. Interesting that Dyson had worked on these matters.
 
  • Like
Likes Vanadium 50, FactChecker, PeroK and 1 other person
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top