emdez
- 1
- 0
- Homework Statement
- Hello, I have to calculate density matrices ## \rho _{AB}, \rho _{AC}, \rho _{BC}## of this state:
##| \psi \rangle _{ABC} = |100 \rangle + | 001 \rangle##
- Relevant Equations
- ##| \psi \rangle _{ABC} = |100 \rangle⟩ + | 001 \rangle##
\begin{align*}
\rho_{AB} &= \text{Tr}_C \, \rho_{ABC} \\
\rho_{AC} &= \text{Tr}_B \, \rho_{ABC} \\
\rho_{BC} &= \text{Tr}_A \, \rho_{ABC}
\end{align*}
I've calculated density matrix
$$ rho_{ABC} = \frac{1}{2} \left( \left| 100 \right\rangle \left\langle 100 \right| + \left| 100 \right\rangle \left\langle 001 \right| + \left| 001 \right\rangle \left\langle 100 \right| + \left| 001 \right\rangle \left\langle 001 \right| \right)$$
and ##
\rho_{AB} = \frac{1}{2} \left( \left| 10 \right\rangle \left\langle 10 \right| + \left| 00 \right\rangle \left\langle 00 \right| \right)
)##. I'm not sure how to calculate other matrices. I don't understand how to calculate partial trace. Could some explain how to do it?
$$ rho_{ABC} = \frac{1}{2} \left( \left| 100 \right\rangle \left\langle 100 \right| + \left| 100 \right\rangle \left\langle 001 \right| + \left| 001 \right\rangle \left\langle 100 \right| + \left| 001 \right\rangle \left\langle 001 \right| \right)$$
and ##
\rho_{AB} = \frac{1}{2} \left( \left| 10 \right\rangle \left\langle 10 \right| + \left| 00 \right\rangle \left\langle 00 \right| \right)
)##. I'm not sure how to calculate other matrices. I don't understand how to calculate partial trace. Could some explain how to do it?
Last edited: