Quantum computing, partial trace

Click For Summary
SUMMARY

This discussion focuses on calculating the partial trace of a density matrix in quantum computing, specifically using the example of the density matrix $$\rho_{ABC}$$ and its reduced form $$\rho_{AB}$$. The calculation involves taking the trace over one subsystem, such as C, using the formula $$\mathrm{Tr}_{C}[ \rho] = \sum_c \langle c | \rho | c \rangle$$. The discussion emphasizes the importance of understanding tensor products and the properties of basis states in this context, ultimately simplifying the calculation by ignoring other subsystems.

PREREQUISITES
  • Understanding of density matrices in quantum mechanics
  • Familiarity with tensor products and basis states
  • Knowledge of the mathematical operation of taking a trace
  • Basic concepts of quantum subsystems and entanglement
NEXT STEPS
  • Study the properties of density matrices in quantum mechanics
  • Learn about the mathematical foundations of tensor products
  • Explore the implications of partial trace in quantum entanglement
  • Investigate advanced topics in quantum computing, such as quantum state tomography
USEFUL FOR

Quantum physicists, researchers in quantum computing, and students studying quantum mechanics who seek to deepen their understanding of density matrices and partial trace calculations.

emdez
Messages
1
Reaction score
0
Homework Statement
Hello, I have to calculate density matrices ## \rho _{AB}, \rho _{AC}, \rho _{BC}## of this state:
##| \psi \rangle _{ABC} = |100 \rangle + | 001 \rangle##
Relevant Equations
##| \psi \rangle _{ABC} = |100 \rangle⟩ + | 001 \rangle##
\begin{align*}
\rho_{AB} &= \text{Tr}_C \, \rho_{ABC} \\
\rho_{AC} &= \text{Tr}_B \, \rho_{ABC} \\
\rho_{BC} &= \text{Tr}_A \, \rho_{ABC}
\end{align*}
I've calculated density matrix
$$ rho_{ABC} = \frac{1}{2} \left( \left| 100 \right\rangle \left\langle 100 \right| + \left| 100 \right\rangle \left\langle 001 \right| + \left| 001 \right\rangle \left\langle 100 \right| + \left| 001 \right\rangle \left\langle 001 \right| \right)$$
and ##
\rho_{AB} = \frac{1}{2} \left( \left| 10 \right\rangle \left\langle 10 \right| + \left| 00 \right\rangle \left\langle 00 \right| \right)

)##. I'm not sure how to calculate other matrices. I don't understand how to calculate partial trace. Could some explain how to do it?
 
Last edited:
Physics news on Phys.org
I'm not very well-versed in this subject, but you must already be close? Taking a "partial trace" over one of the subsystems, e.g. C, means to say:$$\mathrm{Tr}_{C}[ \rho] = \sum_c \langle c | \rho | c \rangle $$where in this case the ##|c\rangle## are a basis for C (and similarly for a, b). This notation "##| abc \rangle##" means the tenor product, ##| abc \rangle := |a\rangle \otimes |b \rangle \otimes |c\rangle## (or just ##|a\rangle |b \rangle |c\rangle##) which has its own special properties.

If you look at just this term, for example:$$\sum_c \langle c|100 \rangle \langle 100| c \rangle$$then what you are doing is actually:$$\sum_c \langle c| \bigg{(} |a=1\rangle |b=0\rangle |c=0\rangle \langle a=1 | \langle b=0| \langle c=0| c \rangle \bigg{)}$$The C basis states don't hit the A and B basis states in the tensor product, so you are left with this:$$|a=1\rangle |b=0\rangle \sum_c \langle c|c=0\rangle + \langle a=1 | \langle b=0| \sum_c \langle c=0| c \rangle $$Those sums are both 1 (e.g. ##\sum_c \langle c| c=0 \rangle = \langle 0 | 0 \rangle + \langle 1 | 0 \rangle = 1 + 0 = 1##), leaving you with: $$|a=1\rangle |b=0\rangle + \langle a=1 | \langle b=0|$$

and the same for all the other terms. I.e. in practice I think you would just "ignore" the other two positions/subsystems to take the trace quickly).
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
11K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
16
Views
3K