vanhees71 said:
On a fundamental level the SGE from the preparation of the Ag atoms (through letting them out of an oven as a beam) to the detection on the photoplate everything is in principle described by unitary time evolution.
With correct definitions of the two boundaries (the end of preparation and the start of detection), yes. But you immediately make those boundaries too broad:
vanhees71 said:
This you can of course never describe in full analytical detail since it would include a huge macroscopic system (the oven with the silver vapor in it, the aperture(s) to shape the beam, the magnet, and finally the photoplate).
You are misstating this. The correct statement is that
the oven and the photoplate are not described by unitary time evolution in our current quantum theory. (See further comments below.) That means
we do not know whether unitary time evolution actually applies to the oven and the photoplate. The claim that it does is not a well-tested conclusion of quantum theory. It is an extrapolation of the theory to a domain in which nobody knows how to test it empirically, and in which the straightforward extrapolation, applying unitary evolution to everything, gives answers that seem obviously contrary to observation (i.e., the MWI). This is the reason why there are multiple interpretations of QM and the question of which, if any, of them are correct remains unresolved.
vanhees71 said:
It is also not necessary to describe all this setup in microscopic detail
Not if you just use standard QM, because, as above, standard QM does not describe the oven and the photoplate using unitary time evolution. It just declares by fiat that the oven produces Ag atoms in a particular state, and that the photoplate gives probabilities for showing a bright spot in different places when an Ag atom hits it. Neither of those things are unitary time evolution.
vanhees71 said:
This classical behavior is emergent in this sense but, at least from a phenomenologist's point of view, complete compatible with the underlying microscopic unitary dynamics.
Only if you accept the MWI, since the MWI is what you get when you apply unitary dynamics to everything.
vanhees71 said:
The idea of an instantaneous collapse is of a different caliber: It's contradicting the very foundations of the theory in its form as a relativistic microcausal QFT to begin with.
The simplest version of the collapse interpretation certainly seems that way, yes. That's another reason why there are multiple interpretations of QM and the question of which, if any, of them are correct remains unresolved. Your personal preference is against collapse; that's fine. But it's still your personal preference: it's not an established theoretical conclusion.
vanhees71 said:
as some of the very recent experimental investigations we discuss here, it seems as if it can now be experimentally demonstrated not to occur at all: There are no instantaneous quantum jumps but just quantum-theoretical time evolution
I've already responded to this: these experiments don't show that there is no collapse, because collapse interpretations don't put the collapse where the experimenters are saying they don't observe collapse. These experiments are basically equivalent to demonstrating that the Ag atom + magnet in the SG experiment undergo unitary evolution, and then claiming that shows there's no collapse--when in fact collapse interpretations put the collapse where the Ag atom hits the photoplate.