Quantum Mechanics Boundary conditions

AI Thread Summary
The discussion focuses on clarifying doubts regarding boundary conditions in quantum mechanics, specifically in Step 3 of a problem. Participants emphasize the importance of clearly stating the doubt to facilitate assistance. The solution involves using two separate wave functions for different regions, with each function representing waves in both directions. At the boundary, the wave functions must be equal, and this equality can be evaluated at the boundary point. The conversation highlights the necessity of matching both the wave functions and their derivatives at the boundary for a complete solution.
MaxJ
Messages
7
Reaction score
0
Homework Statement
below
Relevant Equations
below
For this problem,
1723530036965.png

The solution is,
1723530056524.png

1723530081396.png

1723530099482.png

1723530114429.png

I have a doubt about Step number 3 about boundary conditions. Someone maybe be able to solve that doubt?

Kind wishes
 
Physics news on Phys.org
MaxJ said:
I have a doubt about Step number 3 about boundary conditions. Someone maybe be able to solve that doubt?
Not unless you tell us what your actual doubt is. The math is straightforward, essentially plug-and-chug.
 
Orodruin said:
Not unless you tell us what your actual doubt is. The math is straightforward, essentially plug-and-chug.
Sir, bless you.

Doubt is matching wave functions give A + B = C + D and how they get their expression for derivatives (also in step 3).
 
MaxJ said:
Doubt is matching wave functions give A + B = C + D and how they get their expression for derivatives (also in step 3).
It would be more conventional (and clearer) to consider 2 separate wave-functions, one for each region: ##\psi_1## for ##x<0## and ##\psi_2## for ##x \ge 0##.

Each wave-function contains 2 terms, representing waves moving in the +x and -x directions in that region.

So, adapting your solution’s notation:
##\psi_1(x) = A e^{ikx} + Be^{-ikx}##
##\psi_2(x) = C e^{iqx} + De^{-iqx}##

At ##x=0## we require that ##\psi_1 =\psi_2##. Simply evaluate ##\psi_1##and ##\psi_2## at ##x=0## and equate them.

Similarly for the dervatives.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top