1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Quantum Mechanics - Time evolution operator , bra ket states.

  1. Apr 13, 2014 #1
    The question is to calculate the time evoution of S[itex]_{x}[/itex] wrt <[itex]\Psi[/itex](t)[itex]\pm[/itex] l where <[itex]\Psi[/itex][itex]\pm[/itex] (t) l= ( [itex]\frac{1}{\sqrt{2}}[/itex](exp([itex]^{+iwt})[/itex]< [itex]\uparrow[/itex] l , [itex]\pm[/itex] exp([itex]^{-iwt}[/itex])<
    [itex]\downarrow[/itex] l ) [1]

    Sx=[itex]\frac{}{2}[/itex]([itex]^{0}_{1}[/itex][itex]^{1}_{0}[/itex] )

    Here is my attempt:

    - First of all from [1] I see that l [itex]\Psi[/itex][itex]\pm[/itex] (t) > = ( [itex]\frac{1}{\sqrt{2}}[/itex](exp([itex]^{-iwt})[/itex] l [itex]\uparrow[/itex] > , [itex]\pm[/itex] exp([itex]^{+iwt}[/itex]) l
    [itex]\downarrow[/itex] > )*

    where * denotes transposing the matrix so it's now a column matrix

    So <[itex]\Psi[/itex](t)[itex]\pm[/itex] l Sx l [itex]\Psi[/itex][itex]\pm[/itex] (t) > = [itex]\frac{ħ}{4}[/itex]( [itex]\frac{1}{\sqrt{2}}[/itex](exp([itex]^{+iwt})[/itex]< [itex]\uparrow[/itex] l , [itex]\pm[/itex] exp([itex]^{-iwt}[/itex])< [itex]\downarrow[/itex] ) S[itex]_{x}[/itex]( [itex]\frac{1}{\sqrt{2}}[/itex](exp([itex]^{-iwt})[/itex] l [itex]\uparrow[/itex] > , [itex]\pm[/itex] exp([itex]^{+iwt}[/itex]) l
    [itex]\downarrow[/itex] > )* = [itex]\frac{ħ}{4}[/itex] < [itex]\uparrow[/itex]l S[itex]_{x}[/itex]l [itex]\uparrow[/itex]> [itex]\pm[/itex] exp [itex]^{+iwt}[/itex]<[itex]\uparrow[/itex] lS[itex]_{x}[/itex] l [itex]\downarrow[/itex]> [itex]\pm[/itex] exp [itex]^{-iwt}[/itex]< [itex]\downarrow[/itex]l S[itex]_{x}[/itex]l [itex]\uparrow[/itex]> [itex]\pm[/itex][itex]^{2}[/itex]<[itex]\downarrow[/itex] lS[itex]_{x}[/itex] l [itex]\downarrow[/itex]>

    = [itex]\frac{ħ}{4}[/itex] ( 1 [itex]\pm[/itex] exp [itex]^{+iwt}[/itex]<[itex]\uparrow[/itex] lS[itex]_{x}[/itex] l [itex]\downarrow[/itex]> [itex]\pm[/itex] exp [itex]^{-iwt}[/itex]< [itex]\downarrow[/itex]l S[itex]_{x}[/itex]l [itex]\uparrow[/itex]> [itex]\pm[/itex][itex]^{2}[/itex]1)


    Okay, so my solution goes straight from line 2 to the answer:

    = [itex]\frac{ħ}{4}[/itex] ( [itex]\pm[/itex] exp [itex]^{+iwt}[/itex]<[itex]\uparrow[/itex] lS[itex]_{x}[/itex] l [itex]\downarrow[/itex]> [itex]\pm[/itex] exp [itex]^{-iwt}[/itex]< [itex]\downarrow[/itex]l S[itex]_{x}[/itex]l [itex]\uparrow[/itex]>)


    So my questions are:

    - what happends to < [itex]\uparrow[/itex]l S[itex]_{x}[/itex]l [itex]\uparrow[/itex]> and < [itex]\downarrow[/itex]l S[itex]_{x}[/itex]l [itex]\downarrow[/itex]> terms? I multiply the bra and ket matrix explicitly , and attain 1 in both cases, so what has happened to these in the answer?
    - Also, the [itex]\pm[/itex][itex]^{2}[/itex] looks messy. should have i got this? can it be simplified to [itex]\pm[/itex]

    Many thanks for any help, greatly appreciated.
     
  2. jcsd
  3. Apr 17, 2014 #2
    anyone?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Quantum Mechanics - Time evolution operator , bra ket states.
  1. Quantum bra/ket problem (Replies: 14)

Loading...