Quantum oscillator algebra help

Click For Summary
SUMMARY

The discussion centers on the algebraic manipulation of the quantum harmonic oscillator Schrödinger's equation. The equation is expressed as d²ψ/dx² + (2mE/h² - m²ω²/h² * x²)ψ = 0, with a substitution of y = √(mω/h) * x. Participants clarify the need to apply the chain rule for derivatives, leading to the transformation of the equation into d²ψ(y)/dy² + (2E/hω - y²)ψ(y) = 0. The general solution is proposed as ψ(y) = u(y)e^(-y²/2), with discussions on its derivation and the significance of the term 2E/hω.

PREREQUISITES
  • Understanding of quantum mechanics, specifically the Schrödinger equation.
  • Familiarity with algebraic manipulation and differential equations.
  • Knowledge of the chain rule in calculus.
  • Experience with LaTeX for formatting mathematical expressions.
NEXT STEPS
  • Study the derivation of the quantum harmonic oscillator solutions in quantum mechanics.
  • Learn about the application of the chain rule in calculus, particularly in physics contexts.
  • Explore the significance of the term 2E/hω in quantum harmonic oscillator solutions.
  • Practice using LaTeX for formatting complex mathematical equations in discussions.
USEFUL FOR

Students and researchers in quantum mechanics, physicists working with differential equations, and anyone interested in the mathematical foundations of quantum harmonic oscillators.

Vol
Messages
16
Reaction score
3
Hi. I am working on the quantum harmonic oscillator Schrödinger's equation and need help with the algebra or whatever it is I am missing. Here are the 2 steps I can't understand:

d^2psi/dx^2 + (2mE/h^2 - m^2w^2/h^2 * x^2)psi = 0

You substitute this into it:

y = sqrt(mw/h)*x

I don't understand how you get

d^2psi(y)/dy^2 + (2E/hw - y^2)psi(y) = 0

I get a mw/h in front of the 2nd term I can't get rid of. If I multiply the whole thing with h/mw then I get a h/mw in front of the first term I can't get rid of. What am I doing wrong? Is it my bad algebra?
 
Physics news on Phys.org
Is there a way I can preview how it looks before I post it? I clicked preview but it is still in code form.
 
d^2

\frac d^2{x}

testing Latex
 
Why doesn't Latex work?
Help.
 
Vol said:
Why doesn't Latex work?

Because you have to enclose it in either double dollar signs (if it's all in its own separate paragraph/equation, no text) or double hash symbols (if it's in line with text).

Here is how the latter works: ##d^2##. There are double hash marks on either side of the d^2 there.

Here is how the former works:

$$
\frac{d^2 x}{dt^2}
$$

There are double dollar signs around the fraction there.
 
PeterDonis said:
you have to enclose it in either double dollar signs (if it's all in its own separate paragraph/equation, no text) or double hash symbols (if it's in line with text).

The section in the help article on "Delimiting your LaTeX code" explains this in more detail.
 
Vol said:
Hi. I am working on the quantum harmonic oscillator Schrödinger's equation and need help with the algebra or whatever it is I am missing. Here are the 2 steps I can't understand:

d^2psi/dx^2 + (2mE/h^2 - m^2w^2/h^2 * x^2)psi = 0

You substitute this into it:

y = sqrt(mw/h)*x

So you are replacing ##x## by ##y \sqrt{\frac{\hbar}{m\omega}}## (isn't that prettier?). But you also have to replace ##\frac{d}{dx}## by ##\sqrt{\frac{m\omega}{\hbar}} \frac{d}{dy}##. Did you do both replacements?
 
Why do we have to replace ##\frac d {dx}## by ##\sqrt \frac {mw} h## ##\frac d {dy}## ? I can see we are changing from dx to dy because we are substituting in ##y\sqrt\frac h {mw}## for x? But where does ##\sqrt \frac {mw} h## come from? Is it the chain rule?
 
  • #10
Vol said:
Why do we have to replace ##\frac d {dx}## by ##\sqrt \frac {mw} h## ##\frac d {dy}## ? I can see we are changing from dx to dy because we are substituting in ##y\sqrt\frac h {mw}## for x? But where does ##\sqrt \frac {mw} h## come from? Is it the chain rule?

Yes. By the chain rule, ##\frac{d\psi}{dx} = \frac{d\psi}{dy} \frac{dy}{dx}##

If ##x = \sqrt{\frac{\hbar}{m\omega}} y##, then ##y = \sqrt{\frac{m\omega}{\hbar}} x##. So ##\frac{dy}{dx} = \sqrt{\frac{m\omega}{\hbar}}##

So ##\frac{d\psi}{dx} = \sqrt{\frac{m\omega}{\hbar}} \frac{d\psi}{dy}##
 
  • #11
stevendaryl said:
Yes. By the chain rule, ##\frac{d\psi}{dx} = \frac{d\psi}{dy} \frac{
stevendaryl said:
Yes. By the chain rule, ##\frac{d\psi}{dx} = \frac{d\psi}{dy} \frac{dy}{dx}##

If ##x = \sqrt{\frac{\hbar}{m\omega}} y##, then ##y = \sqrt{\frac{m\omega}{\hbar}} x##. So ##\frac{dy}{dx} = \sqrt{\frac{m\omega}{\hbar}}##

So ##\frac{d\psi}{dx} = \sqrt{\frac{m\omega}{\hbar}} \frac{d\psi}{dy}##

Thanks. I get it now. Then you cancel out all the mw/h with h/mw. I will be back with questions about the next step for a series solution.
 
  • #12
OK, so I get:
##\frac {d^2\Psi(y)} {dy^2} + (\frac {2E} {hw} - y^2)\Psi(y) = 0##
Then,
##\Psi(y) = u(y)e^{\frac {-y^2}{2}}## is the general solution.
Totally lost. Where did ##\frac{-y^2}2## come from?
 
Last edited:
  • #13
Anybody? Am I missing something altogether?
 
  • #14
Vol said:
Then,
##\Psi(y) = u(y)e^{\frac {-y^2}{2}}## is the general solution.

How did you find this?

Vol said:
Totally lost. Where did ##\frac{-y^2}{2}## come from?

Have you tried plugging the general solution into the differential equation?
 
  • #15
That is exactly my point. Looking at the given equation and seeing that ##\frac {2E} {hw}## is negligible compared to ##y^2## you are supposed to guess the general solution... that ##\Psi(y)## will be as ##e^{\frac {-y^2} 2}##. Totally lost. Here is where I found this problem:

physics.gmu.edu/~dmaria/590%20Web%20Page/public_html/qm_topics/harmonic/
 
  • #16
Vol said:
Looking at the given equation and seeing that ##\frac {2E} {hw}## is negligible compared to ##y^2## you are supposed to guess the general solution... that ##\Psi(y)## will be as ##e^{\frac {-y^2} 2}##.

Once again: have you tried plugging ##\Psi(y) = e^{\frac{-y^2}{2}}## into the differential equation? (Hint: to get the equation to work you will not be able to ignore the ##2E / h w## term.)
 
  • #17
Vol said:
Here is where I found this problem:

physics.gmu.edu/~dmaria/590%20Web%20Page/public_html/qm_topics/harmonic/

This reference might not be entirely reliable. It looks like someone's personal resource, not a textbook or peer-reviewed paper.
 
  • #18
PeterDonis said:
have you tried plugging ##\Psi(y) = e^{\frac{-y^2}{2}}## into the differential equation? (Hint: to get the equation to work you will not be able to ignore the ##2E / h w## term.)

Actually, I mis-phrased this. I should have said that you will not be able to get ##\Psi(y) = e^{\frac{-y^2}{2}}## to be a solution of the differential equation without the ##2E / h w## term; i.e, it is not a solution of ##d^2 \Psi / dy^2 - y^2 \Psi = 0##. So I am dubious about the article's claim that you can "guess" ##\Psi(y) = e^{\frac{-y^2}{2}}## by ignoring the ##2E / h w## term for large ##y##. (Note that in your statement of what the article said, you left out the "for large ##y##" qualifier.)
 
  • #19
PeterDonis said:
Actually, I mis-phrased this. I should have said that you will not be able to get ##\Psi(y) = e^{\frac{-y^2}{2}}## to be a solution of the differential equation without the ##2E / h w## term; i.e, it is not a solution of ##d^2 \Psi / dy^2 - y^2 \Psi = 0##. So I am dubious about the article's claim that you can "guess" ##\Psi(y) = e^{\frac{-y^2}{2}}## by ignoring the ##2E / h w## term for large ##y##. (Note that in your statement of what the article said, you left out the "for large ##y##" qualifier.)
Yikes. But it is from a university site. Now I am really confused. But where did ##e^{\frac{-y^2}{2}}## come from? How did he come up with that guess?
 
Last edited:
  • #20
Vol said:
Yikes. But it is from a university site. Now I am really confused. But where did ##e^{\frac{-y^2}{2}}## come from?

It's just a guess. If you let ##\Psi_0(y) = e^{-\frac{y^2}{2}}##, then

##\frac{d\Psi_0}{dy} = -y \Psi_0##
##\frac{d^2 \Psi_0}{dy^2} = (y^2 - 1) \Psi_0##

So ##\frac{d^2 \Psi_0}{dy^2} + (\frac{2E}{\hbar \omega} - y^2) \Psi_0 = (\frac{2E}{\hbar \omega} - 1) \Psi_0##

So ##\Psi_0## solves the equation when ##E = \frac{1}{2} \hbar \omega##.
 
  • #21
Vol said:
it is from a university site

It's someone's personal page provided by their university. Again, it's not a textbook or peer-reviewed paper.
 
  • #22
Oh, I see. He was just thinking backwards. Thanks.
 
  • #23
Oh geesh! I thought it was by a mathematician. Well, I now know better.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K