A Quantum Properties of Quasi Static Electric Fields

Javelin
Messages
1
Reaction score
1
TL;DR Summary
Do quasi static electric fields produced by moving entangled ions have entangled properties?
Assume I could produce a stream of calcium ions from a 2nm diameter nanotube by pushing them through the nanotube using coulomb repulsion. Assuming these coulomb repulsed ions produce a stream of entangled ions which then create a slowly emitting quasi static electric (near) field.

Even if (let’s say) after being emitted, as the ions slow down the ions interact with stuff, but at the point of ejection and production. of the quasi static electric field they were entangled.

So does anybody know if this emitted quasi static electric field (not the ions) has entangled quantum properties?

My feeling is the field has entangled properties because otherwise I could compute the quantum properties of the ions being ejected.
 
Physics news on Phys.org
Entanglement is not a property (observable) of the quanta. It is a characteristic of their mode of production. Certainly, the electric field quanta produced by ions will be entangled with said ions. But I am not clear on what you actually mean by having "entangled quantum properties".

For a quantum to have some property then there must be a possible device that will indicate all systems with that property and fail to indicate all systems without that property. You can, of course, build a device which, for a composite pair of quanta, selects for a specific sharp mode which is specifically an entangled mode but you can't filter out all entangled modes from all unentangled modes. To see this note that you can construct a basis consisting of only entangled modes. If your filter passes these it will pass all modes including unentangled ones.

Finally, note that you cannot in any way measure only one half of a quantum pair and determine if it is entangled with something else. Consider this and its generalization to larger ensembles as you consider your question.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top