Question about arctan addition

  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Addition
Click For Summary
SUMMARY

The discussion centers on the addition of arctangent functions, specifically proving the identity $$\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$$ under the condition that $$xy < 1$$. Participants clarify that the domains of the arctangent function restrict the values of $$\alpha$$ and $$\beta$$ to $$(-\pi/4, \pi/4)$$, leading to the conclusion that both $$x$$ and $$y$$ must lie within the interval $$(-1, 1)$$. The conversation also highlights the necessity of considering cases where $$xy > 1$$, which requires adding or subtracting $$\pi$$ to the result due to the periodic nature of the tangent function.

PREREQUISITES
  • Understanding of inverse trigonometric functions, particularly arctangent.
  • Familiarity with the properties of the tangent function and its domain.
  • Knowledge of angle addition formulas in trigonometry.
  • Basic concepts of continuity and limits in calculus.
NEXT STEPS
  • Study the properties of the arctangent function and its discontinuities.
  • Learn about the conditions under which angle addition formulas apply in trigonometry.
  • Explore the implications of the periodicity of the tangent function on arctangent identities.
  • Investigate the graphical representation of the tangent and arctangent functions to visualize their behavior.
USEFUL FOR

Mathematicians, students studying trigonometry, and anyone interested in understanding the properties of inverse trigonometric functions and their applications in calculus.

issacnewton
Messages
1,035
Reaction score
37
Homework Statement
Prove the following identity . If ## f(x) = \arctan(x) + \arctan(y) ## then prove that
$$f(x) =
\begin{cases}
\arctan\bigg( \frac{x+y}{1 - xy} \bigg), \qquad xy < 1 \\
\pi + \arctan\bigg( \frac{x+y}{1 - xy} \bigg), \quad x>0, y > 0, xy > 1 \\
-\pi + \arctan\bigg( \frac{x+y}{1 - xy} \bigg), \quad x < 0, y < 0, xy > 1
\end{cases} $$
Relevant Equations
Equations of inverse tangent functions
Now following is my attempt for the very first one. Let ##\arctan(x) = \alpha## and ## \arctan(y) = \beta ##. So, I have ## x = \tan(\alpha)## and ##y = \tan(\beta)##. Since the domain is restricted to define inverse function, I have that ##\alpha \in (-\pi/2, \pi/2) ## and ##\beta \in (-\pi/2, \pi/2)##. Now, I use the following identity for addition of angles

$$ \tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta) }{ 1- \tan(\alpha) \tan(\beta) } $$

On the left hand side, we have ##\alpha + \beta ## as the argument for the ##tan## function. But since the domain of the tan function is restricted, we must have that ##\alpha + \beta \in (-\pi/2, \pi/2) ##. This further restricts the values which ##\alpha## and ##\beta## can take. So, we have ##\alpha \in (-\pi/4, \pi/4) ## and ##\beta \in (-\pi/4, \pi/4)##. This means the following

$$ - \frac{\pi}{4} < \alpha < \frac{\pi}{4} $$
$$ - \frac{\pi}{4} < \beta< \frac{\pi}{4} $$

Now, I use the fact that ##\tan## is an increasing function. So, I get ## - 1 < \tan(\alpha) < 1 ## and ## -1 < \tan(\beta) < 1 ##. Which means that ##x \in (-1,1) ## and ##y \in (-1,1) ##. From this, its easy to prove that ## xy < 1## and plugging for x and y, we get the required first identity.

$$ \alpha + \beta = \arctan \Big( \frac{x+y}{1 - xy} \Big) $$
$$ \arctan(x) + \arctan(y) = \arctan \Big( \frac{x+y}{1 - xy} \Big) $$

Is my reasoning right ? For the other two identities, I have no clue how to proceed.
Thanks
 
Physics news on Phys.org
IssacNewton said:
Homework Statement:: Prove the following identity . If ## f(x) = \arctan(x) + \arctan(y) ## then prove that
$$f(x) =
\begin{cases}
\arctan\bigg( \frac{x+y}{1 - xy} \bigg), \qquad xy < 1 \\
\pi + \arctan\bigg( \frac{x+y}{1 - xy} \bigg), \quad x>0, y > 0, xy > 1 \\
-\pi + \arctan\bigg( \frac{x+y}{1 - xy} \bigg), \quad x < 0, y < 0, xy > 1
\end{cases} $$
Relevant Equations:: Equations of inverse tangent functions

Now following is my attempt for the very first one. Let ##\arctan(x) = \alpha## and ## \arctan(y) = \beta ##. So, I have ## x = \tan(\alpha)## and ##y = \tan(\beta)##. Since the domain is restricted to define inverse function, I have that ##\alpha \in (-\pi/2, \pi/2) ## and ##\beta \in (-\pi/2, \pi/2)##. Now, I use the following identity for addition of angles

$$ \tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta) }{ 1- \tan(\alpha) \tan(\beta) } $$

On the left hand side, we have ##\alpha + \beta ## as the argument for the ##tan## function. But since the domain of the tan function is restricted, we must have that ##\alpha + \beta \in (-\pi/2, \pi/2) ##. This further restricts the values which ##\alpha## and ##\beta## can take. So, we have ##\alpha \in (-\pi/4, \pi/4) ## and ##\beta \in (-\pi/4, \pi/4)##. This means the following

$$ - \frac{\pi}{4} < \alpha < \frac{\pi}{4} $$
$$ - \frac{\pi}{4} < \beta< \frac{\pi}{4} $$

Now, I use the fact that ##\tan## is an increasing function. So, I get ## - 1 < \tan(\alpha) < 1 ## and ## -1 < \tan(\beta) < 1 ##. Which means that ##x \in (-1,1) ## and ##y \in (-1,1) ##. From this, its easy to prove that ## xy < 1## and plugging for x and y, we get the required first identity.

$$ \alpha + \beta = \arctan \Big( \frac{x+y}{1 - xy} \Big) $$
$$ \arctan(x) + \arctan(y) = \arctan \Big( \frac{x+y}{1 - xy} \Big) $$

Is my reasoning right ? For the other two identities, I have no clue how to proceed.
Thanks
I don't see where you used ##xy < 1## here.

Do you understand why ##f(x)## is not always equal to ##g(x) = \arctan(\frac{x + y}{1 - xy})##, depending on ##x## and ##y##?
 
Well ##x## and ##y## are in ##\mathbb{R}## and since I reasoned that ##x, y \in (-1,1)##, we can take various cases of ##x## and ##y## and then prove that ##xy < 1##. I thought we are supposed to prove this.
 
IssacNewton said:
Well ##x## and ##y## are in ##\mathbb{R}## and since I reasoned that ##x, y \in (-1,1)##, we can take various cases of ##x## and ##y## and then prove that ##xy < 1##. I thought we are supposed to prove this.

If ##xy < 1##, you could have ##x = \frac 1 3, \ ##y = 2##.

What about my main question:

PeroK said:
Do you understand why ##f(x)## is not always equal to ##g(x) = \arctan(\frac{x + y}{1 - xy})##, depending on ##x## and ##y##?
 
No, I am confused about the question.
 
IssacNewton said:
No, I am confused about the question.

Try some numbers. See what you get.
 
Ok, so the domain of ##\arctan## should be ##(-\pi/2, \pi/2)##, right ? I will try some values
 
IssacNewton said:
Ok, so the domain of ##\arctan## should be ##(-\pi/2, \pi/2)##, right ? I will try some values
The domain of ##\arctan## is ##\mathbb R##. The range is ##(-\pi/2, \pi/2)##.

It's a tricky question.
 
I tried few values of ##x,y## so that ##xy < 1## on WolframAlpha and yes in this case, we have that
$$ \arctan(x) + \arctan(y) = \arctan\Big( \frac{x+y}{1-xy} \Big) $$

So, how do I proceed proving this ? How would my argument change ?
 
  • #10
IssacNewton said:
I tried few values of ##x,y## so that ##xy < 1## on WolframAlpha and yes in this case, we have that
$$ \arctan(x) + \arctan(y) = \arctan\Big( \frac{x+y}{1-xy} \Big) $$

So, how do I proceed proving this ? How would my argument change ?

What I meant was to try to find values of ##x, y## where this is not true and see why. The confusing thing, surely, is why that equation is not true for all ##x, y##. Why do you sometimes have to add ##\pm \pi##?
 
  • #11
So, for ##x=10## and ##y = 1/3##, I get ##\arctan(x) + \arctan(y) = 1.793##, which is greater than ##\pi/2## , so this is is beyond the range of arctan function and ##\arctan((x+y)/(1-xy)) = -1.35## and this is within the range of arctan function.
 
  • #12
IssacNewton said:
So, for ##x=10## and ##y = 1/3##, I get ##\arctan(x) + \arctan(y) = 1.793##, which is greater than ##\pi/2## , so this is is beyond the range of arctan function and ##\arctan((x+y)/(1-xy)) = -1.35## and this is within the range of arctan function.

... and the difference is ##1.793 - (-1.35) = 3.14 = \pi##.

What I would do first is draw the graph of ##\tan## and show various possibilities for ##\alpha, \beta## and ##\alpha + \beta##.

Because of the nature of the ##\arctan## function, this isn't going to come out purely algebraically. You're going to need the graph of ##\tan##.
 
  • #13
So, is there no algebraic proof of this ?
 
  • #14
IssacNewton said:
So, is there no algebraic proof of this ?

I said "purely" algebraically. The problem is knowing when to add ##\pm \pi##. That's not going to come out very easily without using the graph.
 
  • #15
Ok. Thanks
 
  • #16
If math analysis is allowed then one can consider derivative ##\frac{\partial f}{\partial x}##
 
  • #17
IssacNewton said:
is there no algebraic proof of this ?
The difficulty is that the arctan function is discontinuous. You know that ##\arctan(\frac{x+y}{1-xy})## will produce the right value modulo ##\pi##. It remains to show that for the second case it produces a value in the range ##(-3\pi/2, -\pi/2)##, etc.
wrobel said:
If math analysis is allowed then one can consider derivative ##\frac{\partial f}{\partial x}##
How does that help with the question asked by the OP, namely, dealing with the different ranges?
 
  • #18
haruspex said:
How does that help with the question asked by the OP, namely, dealing with the different ranges?
Let us regard ##y## as a parameter. We have two functions
$$f(x)=\arctan x+\arctan y,\quad g(x)=\arctan\Big(\frac{x+y}{1-xy}\Big).$$
Assume for example that ##y>0,\quad x>1/y##.
We obviously have ##g'(x)=f'(x)##. And these derivatives are continuous for ##x>1/y##. Thus for such ##x## it follows that ##g(x)=f(x)+const.## The constant may depend on the parameter ##y##.
Passing to a limit as ##x\to 1/y+## we get $$-\pi/2=\arctan(1/y)+\arctan y+const.$$
On the other hand
$$\frac{d}{dy}(\arctan(1/y)+\arctan y)=0$$ and thus (chek for ##y=1##) we get
$$\arctan(1/y)+\arctan y=\pi/2\Longrightarrow const=-\pi$$
That's all
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K