MHB Question about centripetal acceleration.

AI Thread Summary
The discussion revolves around calculating centripetal acceleration and forces acting on a child in a swing scenario. The centripetal acceleration at the lowest point is calculated to be 40.5 m/s², leading to confusion regarding the force exerted by the child on the swing seat, which should include gravitational force. The discrepancy in force calculations highlights that both the normal force and gravitational force contribute to the net centripetal force. Concerns are raised about the high acceleration experienced by the child, which is approximately four times the acceleration due to gravity. The maximum realistic speed at the lowest point can be computed using conservation of energy principles.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Hi,

A mother pushes her child on a swing so that his speed is 9.00 m/s at the lowest point of his path. The swing is suspended 2.00 m above the child’s center of mass.

(a) What is the magnitude of the centripetal acceleration of the child at the low point?

(b) What is the magnitude of the force the child exerts on the seat if his mass is 18.0 kg?

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent?

Answer:- (a) $\frac{(9.00 m/s)^2}{2.00 m}=40.5 m/s^2$

(b) Answer given is 905 N. But my answer is $40.5 m/s^2 \times 18.00kg =729 N$ What is wrong with my answer?

How would you answer question (c) and (d)?
 
Mathematics news on Phys.org
Dhamnekar Winod said:
Answer:- (a) $\frac{(9.00 m/s)^2}{2.00 m}=40.5 m/s^2$

(b) Answer given is 905 N. But my answer is $40.5 m/s^2 \times 18.00kg =729 N$ What is wrong with my answer?

There are two forces acting on the child: the normal force from the swing, and the gravitational force.
They are opposite and they must add up to the centripetal force.
In other words, you still need to add the gravitational force.

How would you answer question (c) and (d)?

The acceleration $40.5\,m/s^2$ is about 4 times the acceleration due to gravity. Add gravity itself and we have 5 times. That seems like a lot to subject a child to.
The maximum speed that the child can realistically have, is if we bring the swing up all the way to the side and 2.00 meters up, and then let it swing down.
What will the speed of the child then be at the lowest point?
 
Hi,
How to compute the maximum speed that the child can realistically have at the lowest point of his path??
 
Dhamnekar Winod said:
Hi,
How to compute the maximum speed that the child can realistically have at the lowest point of his path??
Easiest is to apply conservation of energy.
The added gravitational energy is $mgh$ with $h=2.00\,m$, which must be equal to the kinetic energy $\frac 12 m v^2$ at the lowest point (disregarding friction).
That is:
$$mgh = \frac 12 mv^2\implies v=\sqrt{2gh}$$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top