MHB Question about generators and relations.

Jack3
Messages
9
Reaction score
0
I am trying to use generators and relations here.

Let M ≤ S_5 be the subgroup generated by two transpositions t_1= (12) and t_2= (34).

Let N = {g ∈S_5| gMg^(-1) = M} be the normalizer of M in S_5.

Describe N by generators and relations.

Show that N is a semidirect product of two Abelian groups.

Compute |N|.

How many subgroups conjugate to M are there in S_5 ? Why?

(I think Sylow's theorems should be used here.)
 
Physics news on Phys.org
Jack said:
Describe N by generators and relations.

Please, show some work, $\color{red}M\color{black}=\{(1,2)^m(3,4)^n:m,n\in \mathbb{Z}\}$. What do you obtain?
 
Last edited:
Fernando Revilla said:
Please, show some work, $N=\{(1,2)^m(3,4)^n:m,n\in \mathbb{Z}\}$. What do you obtain?

are you sure about this? it seems to me that g = (1 3)(2 4) is an element of N, since:

gt1g-1 = t2

gt2g-1 = t1

g(t1t2)g-1 = t2t1 = t1t2 (since these are disjoint, and thus commute).

perhaps you meant to use "M", instead of "N", N is the normalizer of M, and we might expect to to be a bit larger than M itself (of course it contains M as a subgroup).

i claim it is obvious that |M| = 4, and that M is non-cyclic. i also claim that no element of N can move 5. so |N| is between 4 and 24, and is a multiple of 4. you should prove these things.

this gives 4 possibilities: |N| = 4,8,12, or 24. since i show an element of N not in M above, 4 is off the table. it can be shown by direct computation that:

t1t2g = (1 4)(2 3) is also in N. this gives a second subgroup of N of order 4:

A = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

some things for YOU to do: show N doesn't contain any 3-cycles. this means |N| cannot be 24 OR 12 (since the only subgroup of order 12 of S4 is A4 which contains ALL 3-cycles).

so |N| = 8, and furthermore N has at least 5 elements of order 2. which group of order 8 could this be?

abelian possibilities:

Z8 (has only one element of order 2), Z4xZ2 (has 3 elements of order 2), Z2xZ2xZ2 (has 7 elements of order 2).

if it turned out N had an element of order 4, it must be non-abelian. does it?

something that may or may not be relevant: Q8 has 6 elements of order 4, and only 1 element of order 2.

finally, if you arrive at the right choice for N, i hope you will clearly see there is an easy way to see it as a semi-direct product of abelian groups (hint: it has a normal subgroup of index 2).
 
Deveno said:
perhaps you meant to use "M", instead of "N",

Of course, just a typo.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Replies
6
Views
3K
Replies
5
Views
18K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
25
Views
4K
Replies
2
Views
2K
Back
Top