Mike442
- 3
- 0
A.T. said:That is basically the Newtonian explanation, with "curvature of space-time" randomly thrown in. In General Relativity there is no "gravitational force", that opposes the force of the hand. That's why the ball experiences proper-acceleration upwards, when held in the hand.
Sorry A. T. but I have to disagree with the statement that the "curvature of space-time is randomly thrown in." Einstein"s field equations reduce down to the Newtonian equation of F = G(M1)(M2)/R^2. So Newton's equation is valid and connected to general relativity. Newton couldn't explain why his equation worked since he developed it from scientific observation and experimentation. He didn't realize that the R squared term in the denominator is actually the result of multiplying the curvature of space-time squared ( 1/R)^2 times G(M1)(M2). Newton's equation works because of the curvature of space-time. I know the conventional why of teaching this equation is that R is the distance between the centers of the two masses M1 and M2. Also, F= ma =G(M1)(M2)/R^2 where a equals the gravitational acceleration constant g.