Question about Radiationless De-Excitation

  • Context: Undergrad 
  • Thread starter Thread starter Kavi
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the concept of Radiationless De-Excitation, where an electron in an atom transitions to a lower energy state without emitting a photon. Participants clarify that while electrons can absorb energy and move to higher orbits, they must release energy to transition to lower orbits, which is not possible at ground energy levels. The conversation also distinguishes between emission and absorption spectra, noting that emission spectra exhibit a wider range of frequencies due to electrons starting from various energy levels, while absorption spectra show fewer lines as most electrons begin from the ground state.

PREREQUISITES
  • Understanding of atomic structure and electron energy levels
  • Familiarity with the concepts of emission and absorption spectra
  • Knowledge of photon interactions and quantized energy states
  • Basic principles of spectroscopy and energy transitions
NEXT STEPS
  • Research the differences between emission and absorption spectra in detail
  • Explore the Pauli Exclusion Principle and its implications on energy states
  • Learn about the mechanisms of Radiationless De-Excitation in various atoms
  • Investigate the effects of temperature and pressure on atomic energy states
USEFUL FOR

Students of physics, researchers in atomic and molecular spectroscopy, and professionals in fields related to quantum mechanics and photonics will benefit from this discussion.

Kavi
Messages
10
Reaction score
0
Hello,

I understand that an electron in an atom can:

1. Absorb any amount of energy from a photon and become excited
2. It may move to a higher energy orbit or remain in the current orbit
3. To move to a lower energy orbit, it must release excess energy so it is at the ground level of the current orbit (Radiationless Deexcitation)
4. Moving to a lower orbit, it will release a photon with properties dependent on the structure of the atom.

If the above is correct, I want to ask,

The mechanism for 3. above is Radiationless Deexcitation. I wanted to know more about this.

Specifically, why does this happen at other excitation energy levels but not at ground energy levels for any given orbit?
 
Physics news on Phys.org
I don't understand what
Kavi said:
it must release excess energy so it is at the ground level of the current orbit
means.

The state of the electron is quantized, meaning that it can only exists in certain discrete states of energy. To change state, it must receive or give away energy, which is most often through interaction with the electromagnetic field (absorption/emission of photons). But it can also exchange energy through other means, such as collisions. This is how you could have radiation less de-excitation. But the electron cannot lose energy this way "by itself."
 
  • Like
Likes   Reactions: Kavi
@Kavi
Describing the structure of an atom in terms of “orbits” is very old fashioned. It fails because there are many other energy states of all but the Hydrogen atom where that simple mechanical model doesn’t work.

In any case, any interaction between charged particles is best described in terms of a photon exchange. Afaik there’s no other magic way for energy to get around in the low energy world of atoms and molecules
 
  • Like
Likes   Reactions: Kavi
Thanks guys, the responses helped, and I did some more researching and found what I was looking for.

Basically, what I meant to ask for was the difference between the emission spectrum and the absorption spectrum, but I didnt know to frame the question in those terms.

If I understand this correctly now, then there is some little difference between the two spectrums and they are not pure inversions of each other, the emission spectrum contains wider frequencies than those of the absorption spectrum.
 
Kavi said:
the difference between the emission spectrum and the absorption spectrum,
You were asking about 'point 3'. if the energy is all internal then there will be no emission or absorption.
Kavi said:
the emission spectrum contains wider frequencies than those of the absorption spectrum.
When we observe absorption spectra, the radiation is often re-radiated but in other directions. hence the apparent dip at certain characteristic frequencies. Other frequencies can cause internal changes which may be permanent or semi permanent.
 
  • Like
Likes   Reactions: Kavi
sophiecentaur said:
You were asking about 'point 3'. if the energy is all internal then there will be no emission or absorption.

When we observe absorption spectra, the radiation is often re-radiated but in other directions. hence the apparent dip at certain characteristic frequencies. Other frequencies can cause internal changes which may be permanent or semi permanent.

Hi, thanks for that. I found the below explanation on another site but I am not sure if it is exactly correct?

In the emission spectrum, the electrons in the energy levels usually start at random energy levels and so there is more of a variety of wavelengths that could possibly be emitted.

Whereas in the absorption spectrum, there are a few lines missing because most electrons start from ground state, meaning that there are less options of energies that a photon can be emitted at.

https://physics.stackexchange.com/q...ion-spectrum-than-on-the-emission-spectr?rq=1
 
Kavi said:
Hi, thanks for that. I found the below explanation on another site but I am not sure if it is exactly correct?
https://physics.stackexchange.com/q...ion-spectrum-than-on-the-emission-spectr?rq=1
This is more of an observation than an explanation. I would put it this way:

Emission spectra are generated in regions where there are 'high energy' conditions, with fast electrons around (for instance). Temperatures can be high and so there will be significant numbers of atoms in higher states than the ground state or even ionised.

"Random states" would only occur in very extreme conditions of pressure and temperatures where the energy states are spread (line broadening - look up Pauli Exclusion Principle). But I don't think this applies here: states are not Random or blurred but discrete. The phrasing should be "more possible states".

Absorption spectra are seen in cold regions of gas where most atoms are in the ground state. But the absorbed (star) light will be re-emitted in other directions over the whole sphere. The spectrum of this light will tend to be a single line.
 

Similar threads

Replies
37
Views
6K
  • · Replies 0 ·
Replies
0
Views
571
  • · Replies 56 ·
2
Replies
56
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
3K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K