- #1

- 39

- 0

As I understand it, a lower frequency photon will be more delocalized, so it would make sense that photons of extremely low frequency would have an uncertainty in position that can exceed the boundaries of a black hole in purely 3 dimensional space. But, when this happens, apparently one photon somehow suddenly becomes two photons. A photon fluctuates against the event horizon from the interior of the black hole and somehow get's separated into two photons, similar to a quantum tunneling effect. But, how does a photon actually "reach" the event horizon from the interior of a black hole when there's length contraction past a zero metric and how do photons of that low of energy exist in a black hole when it has huge concentrations of energy compacted into a small dense space and should be very very very hot?