A Question about Stark interference

  • A
  • Thread starter Thread starter BillKet
  • Start date Start date
  • Tags Tags
    Interference
BillKet
Messages
311
Reaction score
30
Hello! I have a question about this paper (@Twigg ?). They claim towards the end of the second page that they use points A and F for their experiment. But for example, at point A the molecular rotation quantum numbers are ##|N=0,m_N=0>## and ##|N=1,m_N=1>##. However, in their experiment the electric field is in the z-direction, which is the direction of the magnetic field, too, which defines the ##m_N##. So if that is the case (and given that the dipole moment operator doesn't interact with the electron or nuclear spins), how can an electric field in the z direction connect 2 states of different ##m_N##? Am I missing something?

Based on my math we should have this:

$$<N=0,m_N=0|\vec{d}\cdot\vec{E}|N=1,m_N=1> = <N=0,m_N=0|d\hat{n}\cdot\vec{E}|N=1,m_N=1>$$
where E is the electric field and ##\hat{n}## is the internuclear axis direction (defined in the frame of the molecule). In general we have:

$$\hat{n} = \sin\theta\cos\phi \hat{x} + \sin\theta\sin\phi \hat{y} + \cos\theta\hat{z}$$
when expressing ##\hat{n}## in the lab frame. From here we get:

$$<N=0,m_N=0|\vec{d}\cdot\vec{E}|N=1,m_N=1> = E_z <N=0,m_N=0|\cos\theta|N=1,m_N=1> $$
We also have that:
$$\cos\theta \propto Y_1^0$$
where ##Y_1^0## is a spherical harmonic and:
$$|N,m_N> \propto Y_N^{m_N}$$
so the above term becomes:

$$<N=0,m_N=0|\vec{d}\cdot\vec{E}|N=1,m_N=1> = E_z \int(Y_0^0\times Y_1^0 \times Y_1^1)$$
where the integral is over ##\theta## and ##\phi##. But that integral is zero (which is a long way of saying that the signed sum of ##m_N## values appearing in the spherical harmonics of that integral is not zero).
 
Last edited:
Physics news on Phys.org
Sorry for the really slow reply!

Check out this paper: https://arxiv.org/abs/0708.2925
Specifically, the paragraph near the bottom of the left column on page 2 that starts "We calculate C...".

In short, there is some mixture of quantum numbers in either parity state that allows a weak, higher-order stark effect.

Hope that helps!
 
  • Like
Likes BillKet and DrClaude
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top