Question about the solution of this system of equations

Click For Summary
SUMMARY

The discussion centers on the solution of a system of equations involving polar coordinates, specifically the equations ρ² = 2ρ and 2θ = -θ + 2kπ, where k is an integer. The professor's solution indicates ρ = 0 and ρ = 2, with θ = -2/3 kπ for k = 0, 1, 2. A participant questions the negative sign in front of 2/3, suggesting it should be positive; however, the consensus is that both forms of the equation yield the same set of solutions, confirming the correctness of the professor's solution.

PREREQUISITES
  • Understanding of polar coordinates and their representation in complex equations
  • Familiarity with integer sets and their properties
  • Knowledge of trigonometric equations and their solutions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of polar coordinates in complex analysis
  • Learn about integer sets and their implications in mathematical equations
  • Explore trigonometric identities and their applications in solving equations
  • Investigate the significance of signs in mathematical expressions and their impact on solutions
USEFUL FOR

Mathematics students, educators, and anyone interested in solving complex equations and understanding polar coordinates.

DottZakapa
Messages
239
Reaction score
17
Homework Statement
complex equations
Relevant Equations
complex numbers
hi
given such system of equations

##
\begin{cases}
\rho^2 = 2 \rho \\
2\theta= -\theta+2k\pi , k\in \mathbb Z \\
\end{cases}
##
in the solution of the professor the system is solved is solved as follows.
##
\begin{cases}
\rho=0 , \rho=2 \\
\theta= -\frac 2 3 k\pi , k = 0,1,2 \\
\end{cases}
##
isn't that minus in front of 2/3 an error?
because it should be positive, right ?
 
Last edited by a moderator:
Physics news on Phys.org
DottZakapa said:
Homework Statement:: complex equations
Relevant Equations:: complex numbers

hi
given such system of equations

##
\begin{cases}
\rho^2 = 2 \rho \\
2\theta= -\theta+2k\pi , k\in \mathbb Z \\
\end{cases}
##
in the solution of the professor the system is solved is solved as follows.
##
\begin{cases}
\rho=0 , \rho=2 \\
\theta= -\frac 2 3 k\pi , k = 0,1,2 \\
\end{cases}
##
isn't that minus in front of 2/3 an error?
It might have been an oversight, but it isn't incorrect.
The equation you wrote could just as well have been written as ##2\theta= -\theta-2k\pi , k\in \mathbb Z ##
DottZakapa said:
because it should be positive, right ?
 
Mark44 said:
It might have been an oversight, but it isn't incorrect.
The equation you wrote could just as well have been written as ##2\theta= -\theta-2k\pi , k\in \mathbb Z ##

if you solve the first system, from where does that minus in front of ##-2k\pi ## comes from?
 
DottZakapa said:
if you solve the first system, from where does that minus in front of ##-2k\pi ## comes from?
Look at it this way:
##2\theta= -\theta+2k\pi , k\in \mathbb Z##
represents exactly the same set of numbers as
##2\theta= -\theta - 2k\pi , k\in \mathbb Z##
As a slightly different example, if ##\sin(\theta) = \frac 1 2##, then all solutions are given by
##\theta = \frac \pi 6 + 2k\pi, k \in \mathbb Z##
The same set of values for ##\theta## could just as well been written as ##\theta = \frac \pi 6 - 2k\pi, k \in \mathbb Z##.

Like I said, it might have been an oversight on the part of your instructor, but it doesn't make any difference in the resulting values.
 
As @Mark44 says, its the same expression. An integer ##k## could be positive or negative, so if you take ##2k## or ##-2k##, both determines the same set of integers, which is positive and negative even integers.

##k=\left\lbrace...,-3,-2,-1,0,1,2,3,...\right\rbrace ##
##2k=\left\lbrace...,-6,-4,-2,0,2,4,6,...\right\rbrace ##
##-2k=\left\lbrace...,6,4,2,0,-2,-4,-6,...\right\rbrace ##

They are both the same set (the order in which you write the elements of a set doesn't matter).
I don't know the context, but sometimes signs are chosen in order to simplify some expressions, or make it easier to realize something.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K