Surface area of a shifted sphere in spherical coordinates

  • #1

Homework Statement



find the surface area of a sphere shifted R in the z direction using spherical coordinate system.

Homework Equations



$$S= \int\int \rho^2 sin(\theta) d\theta d\phi$$

$$x^2+y^2+(z-R)^2=R^2$$

The Attempt at a Solution



I tried to use the sphere equation mentioned above and solve for ρ, using the definition of ρ and z in spherical coordinate system, this gives me:

$$x^2+y^2+z^2+R^2-2 R z= R^2$$
$$\rho^2-2 R \rho cos(\theta)= 0$$
$$\rho= 2 R cos(\theta)$$

then substitute in the integral:

$$S= \int\int 4 R^2 cos(\theta)^2 sin(\theta) d\theta d\phi$$

and integrate with the following boundaries:

θ: 0 → π/2
Φ: 0 → 2π

this gives a wrong answer of:

$$\frac{8 \pi R^2}{3}$$

What am I missing? This is a very basic problem but I cannot put my hand on the mistake.
 

Answers and Replies

  • #2
LCKurtz
Science Advisor
Homework Helper
Insights Author
Gold Member
9,556
767

Homework Statement



find the surface area of a sphere shifted R in the z direction using spherical coordinate system.

Homework Equations



$$S= \int\int \rho^2 sin(\theta) d\theta d\phi$$

$$x^2+y^2+(z-R)^2=R^2$$

The Attempt at a Solution



I tried to use the sphere equation mentioned above and solve for ρ, using the definition of ρ and z in spherical coordinate system, this gives me:

$$x^2+y^2+z^2+R^2-2 R z= R^2$$
$$\rho^2-2 R \rho cos(\theta)= 0$$
$$\rho= 2 R cos(\theta)$$

then substitute in the integral:

$$S= \int\int 4 R^2 cos(\theta)^2 sin(\theta) d\theta d\phi$$
With your choice of variables shouldn't that be a ##\sin\phi## in the integral?
 
  • #3
127
83
You need to recalculate the metric for the new parametrization. Your form of the integral implicitly assumes ##\rho=\text{constant}##.
 
  • #4
You need to recalculate the metric for the new parametrization. Your form of the integral implicitly assumes ##\rho=\text{constant}##.
I was afraid someone would post this specific answer. I had my doubts, but I thought the problem is too easy to get complicated. I think I was wrong about that.

Thank you, I am able to find the solution I am looking for.
 
  • Like
Likes berkeman

Related Threads on Surface area of a shifted sphere in spherical coordinates

Replies
7
Views
957
Replies
3
Views
1K
  • Last Post
Replies
1
Views
6K
  • Last Post
Replies
3
Views
5K
Replies
2
Views
5K
Replies
3
Views
1K
Replies
3
Views
1K
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
5
Views
2K
Replies
5
Views
7K
Top