Change of variables in multiple integrals

Click For Summary
The discussion focuses on calculating the volume of the solid defined by the intersection of a sphere (x² + y² + z² = 4) and a cylinder (x² + y² = 1). The initial attempts to solve the problem involve using triple integrals in spherical coordinates, but some participants express concerns about misinterpreting the problem's requirements. Key points include the importance of visualizing the solid to correctly set up integration limits and the realization that the volume calculation involves both the cylinder and spherical caps. Ultimately, various methods are discussed, leading to the conclusion that different approaches can yield the same volume result, emphasizing the need for a clear understanding of the geometric shapes involved.
  • #31
Delta2 said:
I know you didn't ask for my comment but it might be another method with "hidden" justification, just like yours is. You have to provide more details (at least to me) on why the integrand is ##4\pi r\sqrt{4-r^2}## and also why the limits of integration are from 0 to 1.
## z = \sqrt{4-r^2} ## and ## \theta = 2\pi r## where r= radius of sphere =2 ## \therefore \theta = 4\pi##
 
Physics news on Phys.org
  • #32
WMDhamnekar said:
## z = \sqrt{4-r^2} ## and ## \theta = 2\pi r## where r= radius of sphere =2 ## \therefore \theta = 4\pi##
Sorry your answer is too laconic for my standards , in order to understand. Why we take that ##z##, why that ##\theta## and why we multiply them? Also r seems to vary from 0 to 1 not from 0 to 2.
 
  • #33
WMDhamnekar said:
## \displaystyle\int_{r=0}^1 4\pi r\sqrt{4-r^2} dr = \frac{\pi(32- 12\sqrt{3})}{3} \sim 11.745 ##
This does work.
WMDhamnekar said:
## z = \sqrt{4-r^2} ## and ## \theta = 2\pi r## where r= radius of sphere =2 ## \therefore \theta = 4\pi##
##2\pi r## is the perimeter of a circle with radius ##r##. Multiplied by some "height", we get the surface area of the side of a cylinder. The intuition here is that the volume of the (upper/lower half of the) body is obtained by summing up infinitely many cylinders with appropriate heights.

Here's my question to you. Why does the integral, as given, account for the entire volume and not just one of the halves?
 
  • Like
Likes SammyS and Delta2
  • #34
nuuskur said:
This does work.

##2\pi r## is the perimeter of a circle with radius ##r##. Multiplied by some "height", we get the surface area of the side of a cylinder. The intuition here is that the volume of the (upper/lower half of the) body is obtained by summing up infinitely many cylinders with appropriate heights.

Here's my question to you. Why does the integral, as given, account for the entire volume and not just one of the halves?
Sorry. I don't know the answer to your question. If you answer it yourself, it would be better for me and other readers, viewers, mathematics students and members of this Physics Forum. By the way, I also want to know if the jacobian have been used in this Corrected Method 2
 
  • #35
WMDhamnekar said:
Sorry. I don't know the answer to your question.
The answer to my question might become apparent if we slightly rewrite the integral as
<br /> V = 2\int _0^1 2\pi r\sqrt{4-r^2}\mathrm{d}r.<br />
WMDhamnekar said:
By the way, I also want to know if the jacobian have been used in this Corrected Method 2
If we convert from one coordinate system to another, then the Jacobian becomes relevant. Not relevant for method 2.
 
  • Like
Likes WMDhamnekar and SammyS

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K