Question on how much intensity of light has been scattered

Click For Summary

Homework Help Overview

The discussion revolves around the scattering of light as it passes through the Earth's atmosphere, specifically focusing on the intensity of light that reaches the ground. Participants are exploring the relevance of various equations related to black-body radiation and Rayleigh scattering in this context.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants are attempting to apply the Stefan-Boltzmann Law and Wien's displacement law to the problem, but some question the relevance of these equations to the scattering of light. There is confusion regarding the combination of different temperatures in the equations presented. Others suggest that the problem is related to the wavelength-dependence in Rayleigh scattering and question the logic behind the calculations involving intensity ratios.

Discussion Status

There is an ongoing exploration of the correct approach to the problem, with some participants providing guidance on the relevance of Rayleigh scattering. Multiple interpretations of the problem are being discussed, and while some participants express uncertainty about the correct answer, productive direction is being provided regarding the nature of scattering and its effects on light intensity.

Contextual Notes

Participants note that the question may not involve black-body radiation and emphasize the need to understand the scattering process in the atmosphere. There is mention of the assumptions regarding absorption and scattering, as well as the implications of using different equations in this context.

Nirmal Padwal
Messages
41
Reaction score
2
Homework Statement
The intensity of light coming from a distant star is measured using two identical instruments A and B, where A is placed in a satellite outside the Earth's atmosphere and B is placed on the
Earth's surface. The results are as follows:

For green (500nm wavelength), intensity of light at A and B (in nW) is 100 and 50 respectively.
For red (700nm wavelength), intensity of light at A and B (in nW) is 200 and x respectively.

Assuming that there is scattering, but no absorption of light in the Earth's atmosphere at these wavelengths, the value of x can be estimated as:

Options:
(a) 177
(b) 167
(c) 157
(d) 147
(e) 137
Relevant Equations
(1) ##I = e\sigma T^4##
(2) ## \lambda T = constant = k##
I actually am not sure what equations are relevant here but I thought these are the relevant ones.

My Approach:
By Stefan-Boltzmann Law, the intensity absorbed by the Earth is given as ## I = e \sigma T^4## where e is the emissivity of Earth, ##\sigma## is Stefan-Boltzmann constant and T is the temperature of the Earth. The values of ##I## for green and red then are ## 50-100 = -50## and ##x-200## respectively.

Now this is where I am stuck. I am not sure if what I do next is valid: By using Wien's displacement law, ##I## may be given as ##I = \frac{e\sigma k }{\lambda^4} ##. Since the wavelengths are given, I simply divide the respective intensity and obtain
\begin{equation}
\frac{x-200}{-50} =\frac{500^4}{700^4}
\end{equation}

Solving for ##x##, I get ##x \approx 187\ nW##. But this is not the right answer. The correct answer is 167 ##nW##.

Can someone please explain where I am going wrong?
 
Physics news on Phys.org
Nirmal Padwal said:
.
Assuming that there is scattering, but no absorption of light in the Earth's atmosphere at these wavelengths, ...
.
Relevant Equations:: (1) ##I = e\sigma T^4##
(2) ## \lambda T = constant = k##
Can someone please explain where I am going wrong?
Since no one has replied yet, I will make a few comments.

The question has nothing to do with black-body radiation. So the formulae you are quoting are irrelevant. Also, the temperatures (T in your two equations (1) and (2)) are different temperatures - so it makes no sense to combine the two equations.

The question is about the scattering of light as it passes through the atmosphere; this reduces the intensity reaching ground-level. Neither the atmosphere nor the Earth act as a black-body absorber in this question.

It looks like the question is about the wavelength-dependence in Rayleigh scattering. You need to read-up about Rayleigh scattering before you attempt the question.

In addition, it would be worth revising-black-body radiation so that you understand the meanings of your equations (1) and (2) in case you ever have a question which is actually about black-body radiation!
 
  • Like
Likes   Reactions: Delta2 and BvU
As @Steve4Physics points out, the question has nothing to do with Stefan-Boltzmann. By coincidence, though, Rayleigh scattering also involves λ4 and so leads to (5/7)4.
But I could not understand your logic with the 50, 100 and 200. What fraction of the green light was scattered? How is that fraction adjusted by the (5/7)4? What fraction does that lead to for the red light?

That said, I don't get 167 either, so maybe it is not Rayleigh scattering, or perhaps some subtlety I am missing.
 
  • Like
Likes   Reactions: Steve4Physics and Delta2
haruspex said:
That said, I don't get 167 either, so maybe it is not Rayleigh scattering, or perhaps some subtlety I am missing.

You can't just multiply the light lost by (5/7)^4. The cross-section for scattering is reduced by (5/7)^4. The intensity falls off as e^{-\alpha x} where x is the distance and α is the probablilty of being scattered. If you reduce α by the ratio (5/7)^4, you in fact get the answer of 167.
 
  • Like
Likes   Reactions: Steve4Physics, rsk and BvU
phyzguy said:
You can't just multiply the light lost by (5/7)^4. The cross-section for scattering is reduced by (5/7)^4. The intensity falls off as e^{-\alpha x} where x is the distance and α is the probablilty of being scattered. If you reduce α by the ratio (5/7)^4, you in fact get the answer of 167.
Ah, yes of course. I should have figured that out.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
993
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
944
  • · Replies 4 ·
Replies
4
Views
2K
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 20 ·
Replies
20
Views
3K