Question on how much intensity of light has been scattered

AI Thread Summary
The discussion centers on the calculation of light intensity scattered by the Earth's atmosphere, specifically addressing the confusion surrounding the use of relevant equations. The initial approach incorrectly applies the Stefan-Boltzmann Law and Wien's displacement law, which are deemed irrelevant for this context. The focus should be on Rayleigh scattering, which explains the wavelength dependence of light scattering in the atmosphere. The correct method involves understanding how the intensity decreases exponentially with distance and adjusting the scattering cross-section appropriately. Ultimately, the correct answer of 167 nW is reached by properly applying the principles of scattering rather than black-body radiation.
Nirmal Padwal
Messages
41
Reaction score
2
Homework Statement
The intensity of light coming from a distant star is measured using two identical instruments A and B, where A is placed in a satellite outside the Earth's atmosphere and B is placed on the
Earth's surface. The results are as follows:

For green (500nm wavelength), intensity of light at A and B (in nW) is 100 and 50 respectively.
For red (700nm wavelength), intensity of light at A and B (in nW) is 200 and x respectively.

Assuming that there is scattering, but no absorption of light in the Earth's atmosphere at these wavelengths, the value of x can be estimated as:

Options:
(a) 177
(b) 167
(c) 157
(d) 147
(e) 137
Relevant Equations
(1) ##I = e\sigma T^4##
(2) ## \lambda T = constant = k##
I actually am not sure what equations are relevant here but I thought these are the relevant ones.

My Approach:
By Stefan-Boltzman Law, the intensity absorbed by the Earth is given as ## I = e \sigma T^4## where e is the emissivity of Earth, ##\sigma## is Stefan-Boltzman constant and T is the temperature of the Earth. The values of ##I## for green and red then are ## 50-100 = -50## and ##x-200## respectively.

Now this is where I am stuck. I am not sure if what I do next is valid: By using Wien's displacement law, ##I## may be given as ##I = \frac{e\sigma k }{\lambda^4} ##. Since the wavelengths are given, I simply divide the respective intensity and obtain
\begin{equation}
\frac{x-200}{-50} =\frac{500^4}{700^4}
\end{equation}

Solving for ##x##, I get ##x \approx 187\ nW##. But this is not the right answer. The correct answer is 167 ##nW##.

Can someone please explain where I am going wrong?
 
Physics news on Phys.org
Nirmal Padwal said:
.
Assuming that there is scattering, but no absorption of light in the Earth's atmosphere at these wavelengths, ...
.
Relevant Equations:: (1) ##I = e\sigma T^4##
(2) ## \lambda T = constant = k##
Can someone please explain where I am going wrong?
Since no one has replied yet, I will make a few comments.

The question has nothing to do with black-body radiation. So the formulae you are quoting are irrelevant. Also, the temperatures (T in your two equations (1) and (2)) are different temperatures - so it makes no sense to combine the two equations.

The question is about the scattering of light as it passes through the atmosphere; this reduces the intensity reaching ground-level. Neither the atmosphere nor the Earth act as a black-body absorber in this question.

It looks like the question is about the wavelength-dependence in Rayleigh scattering. You need to read-up about Rayleigh scattering before you attempt the question.

In addition, it would be worth revising-black-body radiation so that you understand the meanings of your equations (1) and (2) in case you ever have a question which is actually about black-body radiation!
 
  • Like
Likes Delta2 and BvU
As @Steve4Physics points out, the question has nothing to do with Stefan-Boltzmann. By coincidence, though, Rayleigh scattering also involves λ4 and so leads to (5/7)4.
But I could not understand your logic with the 50, 100 and 200. What fraction of the green light was scattered? How is that fraction adjusted by the (5/7)4? What fraction does that lead to for the red light?

That said, I don't get 167 either, so maybe it is not Rayleigh scattering, or perhaps some subtlety I am missing.
 
  • Like
Likes Steve4Physics and Delta2
haruspex said:
That said, I don't get 167 either, so maybe it is not Rayleigh scattering, or perhaps some subtlety I am missing.

You can't just multiply the light lost by (5/7)^4. The cross-section for scattering is reduced by (5/7)^4. The intensity falls off as e^{-\alpha x} where x is the distance and α is the probablilty of being scattered. If you reduce α by the ratio (5/7)^4, you in fact get the answer of 167.
 
  • Like
Likes Steve4Physics, rsk and BvU
phyzguy said:
You can't just multiply the light lost by (5/7)^4. The cross-section for scattering is reduced by (5/7)^4. The intensity falls off as e^{-\alpha x} where x is the distance and α is the probablilty of being scattered. If you reduce α by the ratio (5/7)^4, you in fact get the answer of 167.
Ah, yes of course. I should have figured that out.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top