I'm currently learning Lie groups/algebras and I am trying to find the infinitesimal generators of the special orthogonal group SO(n). It is the n-dimensions that throws me off. I know that the answer is [itex]n(n-1)/2[/itex] generators of the form,(adsbygoogle = window.adsbygoogle || []).push({});

[tex]X_{\rho,\sigma}=-i\left(x_{\rho}\frac{\partial}{\partial x_{\sigma}}-x_{\sigma}\frac{\partial}{\partial x_{\rho}}\right)[/tex]

where [itex]1\leq x_{\rho}\leq n[/itex] such that [itex]\sigma > \rho[/itex], but how do I get this? The only way I could think of is somehow trying to find the n-dimensional rotation matrix in general and then going from there (I have actually tried this and it gets me something similar)--there must be a simpler way though.

I also run into this problem in other areas of the book I am using. For example attempting to establish that the Lie algebra sl(n,C) is an ideal of gl(n,C). I guess I am looking for some advice on how to compute these algebras in n-dimensions. Thanks in advance for any help/suggestions, and let me know if I can make anything more clear.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question on N-dimensional Lie Groups

**Physics Forums | Science Articles, Homework Help, Discussion**