Question on the Lorentz force: Why is the force not F=q(v×B) = F=qv×qB

Click For Summary
SUMMARY

The Lorentz force equation for a moving charge in a magnetic field is defined as F = q(v × B). The confusion arises from the misconception that the charge q should be multiplied to both vectors in the cross product. The correct interpretation is that the scalar multiplication applies to the result of the cross product, not to each vector individually. This is clarified through the properties of scalar multiplication and vector products, emphasizing that the multiplication by a scalar is not distributive over the vector product.

PREREQUISITES
  • Understanding of vector calculus and cross products
  • Familiarity with the Lorentz force equation
  • Knowledge of scalar multiplication in vector mathematics
  • Basic principles of electromagnetism
NEXT STEPS
  • Study the properties of vector products and scalar multiplication
  • Explore the derivation and applications of the Lorentz force equation
  • Learn about electromagnetic fields and their interactions with charged particles
  • Investigate the implications of the distributive property in vector mathematics
USEFUL FOR

Students of physics, educators teaching electromagnetism, and anyone seeking a deeper understanding of vector mathematics in the context of the Lorentz force.

unplebeian
Messages
157
Reaction score
1
TL;DR
Why is the charge not multiplied to the cross product
Background:
cb96d860cadff3d60e8ffb90b067b7f2b453c8e1
is the equation of Lorentz force for the force acting on a moving charge in electric and magnetic field.

For the magnetic field only it is : F=qv×B.

Question:
For magnetic field only why is the force not F=q(v×B) = F=qv×qB
 
Last edited by a moderator:
Physics news on Phys.org
unplebeian said:
TL;DR Summary: Why is the charge not multiplied to the cross product

Background:
cb96d860cadff3d60e8ffb90b067b7f2b453c8e1
is the equation of Lorentz force for the force acting on a moving charge in electric and magnetic field.

For the magnetic field only it is : F=qv×B.

Question:
For magnetic field only why is the force not F=q(v×B) = F=qv×qB
You are only multiplying by q once, so
##q \textbf{v} \times \textbf{B}##

##= q ( \textbf{v} \times \textbf{B} )##

## = (q \textbf{v} ) \times \textbf{B}##

##= \textbf{v} \times (q \textbf{B})##

-Dan
 
  • Like
Likes   Reactions: Gavran and Ibix
Hi, Dan,
I'm sorry I didn't get it. That is a scalar multiplication so q should be multiplied to both. Generally a(bxc)= abxac.
Why are we multiplying only once?
 
unplebeian said:
Generally a(bxc)= abxac.
This is wrong.
$$a(\mathbf b \times \mathbf c) = a\mathbf b \times \mathbf c = \mathbf b \times a\mathbf c$$You must be thinking of:
$$a(\mathbf b + \mathbf c) = a\mathbf b + a\mathbf c$$
 
  • Like
Likes   Reactions: Gavran, Vanadium 50, Ibix and 1 other person
unplebeian said:
Hi, Dan,
I'm sorry I didn't get it. That is a scalar multiplication so q should be multiplied to both. Generally a(bxc)= abxac.
Why are we multiplying only once?
Is ##2(3 \times 4 ) = (2 \cdot 3) \times (2 \cdot 4)##?

-Dan
 
  • Like
Likes   Reactions: Vanadium 50, Ibix and PeroK
PeroK said:
This is wrong.
$$a(\mathbf b \times \mathbf c) = a\mathbf b \times \mathbf c = \mathbf b \times a\mathbf c$$You must be thinking of:
$$a(\mathbf b + \mathbf c) = a\mathbf b + a\mathbf c$$
Easy to make mistake if in elementary school you learned the order of operations as "Dot (##\cdot## and ##\colon##) before stroke (##+## and ##-##)", because that's how the basic operators are written in your country.
 
Last edited:
  • Like
Likes   Reactions: topsquark
Thank you, Dan. I thought about it graphically and it's evident that the scalar multiplication to both vectors prior to the cross product operation is incorrect. Rather take the cross product and then perform the scalar multiplication or simply any one vector like you suggested.

Thank you.
 
  • Like
Likes   Reactions: berkeman
## \vec F = q ( \vec E + \vec v \times \vec B ) ##

## q ( \vec E + \vec v \times \vec B ) = q \vec E + q ( \vec v \times \vec B ) ## – the distributive property of scalar multiplication over the vector addition

## q ( \vec v \times \vec B ) = ( q \vec v ) \times \vec B = \vec v \times ( q \vec B ) ## - the multiplication by a scalar property of the vector product (the multiplication by a scalar is not distributive over the vector product)
 
  • Like
Likes   Reactions: topsquark, malawi_glenn and PeroK
Gavran said:
## \vec F = q ( \vec E + \vec v \times \vec B ) ##

## q ( \vec E + \vec v \times \vec B ) = q \vec E + q ( \vec v \times \vec B ) ## – the distributive property of scalar multiplication over the vector addition

## q ( \vec v \times \vec B ) = ( q \vec v ) \times \vec B = \vec v \times ( q \vec B ) ## - the multiplication by a scalar property of the vector product (the multiplication by a scalar is not distributive over the vector product)
:welcome:
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 1 ·
Replies
1
Views
710
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 5 ·
Replies
5
Views
981
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K