Can Vectors Span Just the Unit Sphere in Spherical Geometry?

Click For Summary
Vectors cannot span just the unit sphere in spherical geometry because any non-empty subset of R^3 spans a subspace that includes points outside the unit sphere. Traditional vector addition would lead to results off the sphere, violating vector space axioms. However, alternative mathematical approaches, such as defining a one-to-one mapping from the sphere to a 2-D plane, could allow for a modified addition operation that adheres to vector space rules. This method would involve mapping points on the sphere to the plane, performing vector addition, and then mapping back to the sphere. Ultimately, while it is theoretically possible to create a new framework for vector operations, it requires redefining addition and multiplication in a way that fits the modified structure.
crownedbishop
Messages
22
Reaction score
1
So I was thinking and I was wondering if we could have a set of vectors that spanned just the unit sphere, and nothing else beyond that. So, if we replace euclid's 5th postulate to give us spherical geometry, a line is a circle on the surface of some sphere. If we have two perpendicular vectors (or two linearly independent) vectors in our spherical geometry, then it would seem that the whole circle of radius r is spanned. If we combine this and do it for all real numbers x such that 0<x<r and add the orgin, we will get a basis for the whole sphere which is a subset of the euclidean plane. Alternatively, I can imagine we could've done the same thing with complex multiplication. I was wondering:
1) Does this actually work?
2) If it does work, what kind of geometrical shapes can you form a basis for?
 
Physics news on Phys.org
It doesn't work. Every non-empty subset of ##\mathbb R^3## spans a subspace of ##\mathbb R^3## that includes points that aren't on the unit sphere.
 
Last edited:
crownedbishop said:
So I was thinking and I was wondering if we could have a set of vectors that spanned just the unit sphere, and nothing else beyond that.

Are you are asking if you can represent a sphere by using the usual method of treating vectors as 3-tuples of numbers? No, that wouldn't work. The sum of two vectors on the sphere would be off the sphere, so the set of vectors on the unit sphere wouldn't satisfy the axiom a vector space that says the sum of two vectors in the space must also be in the space.

However, the mathematical definition of a vector space is more general than the usual way of dealing 3-tuples of numbers. It would interesting to see what you can come up with.

A general approach to represent a surface as a set of vectors would be to find a 1-to-1 mapping F from the surface to the 2-D plane. Then for points P and Q on the surface, you define the operation P+Q to be: Use F to map P and Q to vectors in the 2-D plane. Do the addition on the vectors in the 2-D plane the usual way. Then map the answer back to the surface by using the inverse function of F.

This might not be the kind of thing you're looking for. However, it is mathematically legal to define the addition of vectors in a vector space in a complicated way, as long as the addition satisifies the mathematical axioms.
 
That's an interesting question. I'll think more about it tomorrow, but maybe you'll find it interesting what I thought so far. I was thinking of a way to associate R3 with the sphere, but some points had to be removed. Let a plane in R3 map to the riemann sphere of radius x such that 0<x<r. Consider parallel planes that map to the riemann sphere such that as you go in one direction, the planes map to a riemann sphere approaching radius r, and in the other direction, the planes map to a riemann sphere approaching radius 0. Our result is a unit ball with a line segment removed, that is from the North Pole to the orgin. If we associate each vector in R3 with a new "vector" in our modified ball, the vector space axioms should fit the bill.
 
Well, you "can" do it, but you need to come up with new definitions of "add" and "multiply". Not to worry, relativistic theory has already done that (adding two velocities close to c results in a new velocity closer to c, but not exceeding it).
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K