PeterDonis
Mentor
- 49,419
- 25,469
PeterDonis said:The metric is
Grrr...I just realized that I used the wrong line element in my previous posts; it should be
$$
ds^2 = - \frac{\left( 1 - \frac{M}{2 a(t) \rho} \right)^2}{\left( 1 + \frac{M}{2 a(t) \rho} \right)^2} + a^2(t) \left( 1 + \frac{M}{2 a(t) \rho} \right)^4 \left( d\rho^2 + \rho^2 d\Omega^2 \right)
$$
Note the extra factor of ##a^2(t)## in the spatial part.
Constant area now means ##A = 4 \pi a^2(t) \left( 1 + \frac{M}{2 a(t) \rho} \right)^4 \rho^2## is constant, which means areal radius ##R = \sqrt{A / 4 \pi} = a(t) \left( 1 + \frac{M}{2 a(t) \rho} \right)^2 \rho## is constant, which gives
$$
\rho(t) = \frac{1}{2} \left[ \frac{R}{a(t)} \left( 1 + \sqrt{1 - \frac{2M}{R}} \right) - \frac{M}{a(t)} \right] \approx \frac{R - M}{a(t)}
$$
That gives corrected values for ##U## and ##A## as follows:
$$
U = \gamma \left( 1, - \frac{R - M}{a^2} \dot{a} \right)
$$
$$
A = \gamma \left( \dot{\gamma}, \frac{R - M}{a^2} \left[ - \dot{\gamma} \dot{a} + 2 \gamma \frac{\dot{a}^2}{a} + \gamma \ddot{a} \right] \right)
$$
So the only difference in ##A## is that we have ##R - M## instead of just ##M##, which doesn't change any of the conclusions; but I wanted to correct the formulas that needed correcting.