Undergrad Question regarding a sequence proof from a book

Click For Summary
The discussion centers on the validity of rewriting a convergent sequence in the form of another sequence that approaches the same limit. The proof in question involves expressing sequences as the sum of their limits and null sequences, leading to the conclusion that the sum of two converging sequences also converges to the sum of their limits. Participants clarify that while sequences cannot be claimed to be term-by-term equal to arbitrary sequences converging to the same limit, defining a null sequence as the difference between a sequence and its limit is acceptable. This approach maintains the integrity of the limit laws for sequences. The proof's logic is ultimately supported by the definitions used in calculus.
MathMorlock
Messages
1
Reaction score
0
I have a Dover edition of Louis Brand's Advanced Calculus: An Introduction to Classical Analysis. I really like this book, but find his proof of limit laws for sequences questionable. He first proves the sum of null sequences is null and that the product of a bounded sequence with a null sequence is null. These proofs are fine, yet he then does this proof.

Suppose ##a_n → α## and ##b_n → β##. Write ##a_n = α + x_n## and ##b_n = β + y_n ## where ##x_n## and ##y_n## are both null sequences. Now
$$
a_n + b_n = \alpha + x_n + \beta+y_n
$$
$$
a_n + b_n -(\alpha+ \beta) = x_n + y_n
$$
We have shown ##a_n + b_n - (α+ β)## is the sum of two null sequences and therefore also null. Hence, $$a_n + b_n \to α + β.$$

Are we really allowed to rewrite a sequence to another one that converges to the same limit, i.e ##a_n = α + x_n##?
 
Physics news on Phys.org
MathMorlock said:
I have a Dover edition of Louis Brand's Advanced Calculus: An Introduction to Classical Analysis. I really like this book, but find his proof of limit laws for sequences questionable. He first proves the sum of null sequences is null and that the product of a bounded sequence with a null sequence is null. These proofs are fine, yet he then does this proof.

Suppose ##a_n → α## and ##b_n → β##. Write ##a_n = α + x_n## and ##b_n = β + y_n ## where ##x_n## and ##y_n## are both null sequences. Now
$$
a_n + b_n = \alpha + x_n + \beta+y_n
$$
$$
a_n + b_n -(\alpha+ \beta) = x_n + y_n
$$
We have shown ##a_n + b_n - (α+ β)## is the sum of two null sequences and therefore also null. Hence, $$a_n + b_n \to α + β.$$

Are we really allowed to rewrite a sequence to another one that converges to the same limit, i.e ##a_n = α + x_n##?
It's not clear to me what you're trying to say. It's given that ##\{x_n\}## is a null sequence; i.e., ##\lim_{n \to \infty} x_n = 0##. ##a_n## doesn't have to be equal to ##\alpha + x_n##, for every n, but ##\lim_{n \to \infty} a_n = \lim_{n \to \infty} \alpha + x_n## must be true.
 
MathMorlock said:
Are we really allowed to rewrite a sequence to another one that converges to the same limit, i.e ##a_n = α + x_n##?

Of course not. We can't claim a sequence {a_n} is term-by-term equal to another abitrarily chosen sequence that converges to the same limit. However, that's not what's being done. We define ## x_n ## to be ##x_n = a_n - \alpha##. Then ##x_n## is a null sequence and, by definition, ##x_n + \alpha = a_n##.
 
MathMorlock said:
Are we really allowed to rewrite a sequence to another one that converges to the same limit, i.e ##a_n = α + x_n##?

You could ask the same about a number. If ##a## and ##\alpha## are numbers, then we know there is a number ##x## such that ##a = \alpha + x##.

In this case, ##a## and ##\alpha + x## represent the same number. Just as ##a_n## and ##\alpha + x_n## represent the same sequence.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
6
Views
12K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K