MHB Question ' write the elements of set A'

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Elements Set
AI Thread Summary
The discussion revolves around interpreting the set A defined by the condition involving positive integers and a variable z. Participants identify a potential typo in the problem statement, suggesting that if z is a positive integer greater than x - 3, then A could be represented as the set of positive integers up to z + 2. They clarify that if z is not defined, A could be considered an empty set. The conversation emphasizes the need for a clear problem statement to accurately determine the elements of set A. Ultimately, the elements of A depend on the value of z, which must be specified for a definitive answer.
mathlearn
Messages
331
Reaction score
0
Cam_Scanner_New_Document_30_e30820120d30_P40_T40_Q00.jpg


Any ideas on how to begin

Many thanks :)
 
Mathematics news on Phys.org
mathlearn said:
Any ideas on how to begin

Many thanks :)

Hi mathlearn! (Smile)

To be honest, that looks like some kind of typo in the problem statement.If we read it like:
$$A=\{x \mid x \in \mathbb Z^+, \mathbb Z > x - 3 \}$$
then it would or should mean that $x-3$ is smaller than any element of $\mathbb Z$, which is never the case.
In that case $A$ is the empty set ($\varnothing$).Alternatively, if we read it as:
$$A=\{x \mid x \in \mathbb Z^+, z > x - 3 \}$$
where $z$ is some number that is presumably in $\mathbb Z^+$, then we have $0<x < z+3$.
So in that case the elements of $A$ are $1, 2, ..., z+2$.
 
I like Serena said:
Hi mathlearn! (Smile)

To be honest, that looks like some kind of typo in the problem statement.Alternatively, if we read it as:
$$A=\{x \mid x \in \mathbb Z^+, z > x - 3 \}$$
where $z$ is some number that is presumably in $\mathbb Z^+$, then we have $0<x < z+3$.
So in that case the elements of $A$ are $1, 2, ..., z+2$.

Reading it in Set builder method

"The set of all x such that x is a positive integer, where z is some number positive number greater that x - 3"

so z(a positive integer,this case 1)> 1-3 = -2-------------------(✖ not a positive integer)
z(a positive integer,this case 2)> 2-3 = -1-------------------(✖ not a positive integer)
z(a positive integer,this case 3)> 3-3 = 0-------------------(✖ neither negative nor positive)
z(a positive integer,this case 4)> 4-3 = 1-------------------(✔ a positive integer)
z(a positive integer, this case 5)> 5-3 = 2-------------------(✔ a positive integer)

and so on like I like Serena ; the numbers are 1,2,3,4,5... on

Representing in a number line,

Capturenumberline.png


OR

A=$\left\{1,2,3,4,5,6,...\right\}$

Correct I guess?

Many Thanks :)
 
Last edited:
I like Serena said:
Alternatively, if we read it as:
$$A=\{x \mid x \in \mathbb Z^+, z > x - 3 \}$$
where $z$ is some number that is presumably in $\mathbb Z^+$, then we have $0<x < z+3$.
So in that case the elements of $A$ are $1, 2, ..., z+2$.

mathlearn said:
Reading it in Set builder method

"The set of all x such that x is a positive integer, where z is some number positive number greater that x - 3"
Even though ILS said that $z$ is presumably in $\mathbb Z^+$, one cannot be certain this is the case. I recommend contacting the problem author and clarifying the problem statement. I don't have high confidence in a problem statement that uses the euro symbol instead of $\in$ and uses the same symbol $Z$ for a set and an individual number.

mathlearn said:
so z(a positive integer,this case 1)> 1-3 = -2-------------------(✖ not a positive integer)
z(a positive integer,this case 2)> 2-3 = -1-------------------(✖ not a positive integer)
z(a positive integer,this case 3)> 3-3 = 0-------------------(✖ neither negative nor positive)
z(a positive integer,this case 4)> 4-3 = 1-------------------(✔ a positive integer)
z(a positive integer, this case 5)> 5-3 = 2-------------------(✔ a positive integer)

and so on like I like Serena ; the numbers are 1,2,3,4,5... on
The set consists not of $z$s, but of $x$s. The number $z$ has to be given up front, before we consider the definition of set $A$. As ILS wrote, once $z$ is given, $A=\{1,2,\dots,z+2\}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top