- 47

- 0

**1. Homework Statement**

Question: a box with a square base and no top must have a volume of 10,000cm^3. if the smallest dimensions in any direction is 5cm, the determine the dimensions of the box that minimize the amount of material used.

**2. Homework Equations**

V=x^2&y

SA=x^2+4xy

(isolate for y using given volume in V equation to obtain y=10,000/x^2)

**3. The Attempt at a Solution**

SA=x^2+4x(10,000/x^2)

when solved....x=27.1

y= 13.6

I have an answer on what the dimensions are, but what do i use as my limitations besides what my x values are. I know i have to use x>or=5....for some reason i can never figure these limitations/restrictions out...

Last edited: