- #1
Draconifors
- 17
- 0
Hi! I have an integral to solve (that's not the point, though) and the inside of the integral is almost a trig identity:
1. Homework Statement
##sin\frac{(x+y)} {2}*cos\frac{(x-y)} {2} ##
I noticed this was very similar to ##sinx+siny = 2sin \frac{(x+y)} {2} * cos\frac{(x-y)} {2}##
Initially, within the context of the problem (a double integral over a certain region) I had used a change of variables which, while tedious, was doable (I can share that work, if you want). While reviewing my work, I recalled this identity, and just wanted to make sure whether or not I could transform the equation into ## \frac {1} {2} (sinx+siny) = sin \frac{(x+y)} {2} * cos\frac{(x-y)} {2}##. I don't see why I couldn't, but I just want a confirmation.
Thank you for your time!
1. Homework Statement
##sin\frac{(x+y)} {2}*cos\frac{(x-y)} {2} ##
Homework Equations
I noticed this was very similar to ##sinx+siny = 2sin \frac{(x+y)} {2} * cos\frac{(x-y)} {2}##
The Attempt at a Solution
Initially, within the context of the problem (a double integral over a certain region) I had used a change of variables which, while tedious, was doable (I can share that work, if you want). While reviewing my work, I recalled this identity, and just wanted to make sure whether or not I could transform the equation into ## \frac {1} {2} (sinx+siny) = sin \frac{(x+y)} {2} * cos\frac{(x-y)} {2}##. I don't see why I couldn't, but I just want a confirmation.
Thank you for your time!