Radiation vs. conduction in thermal equilibrium

In summary: No. The endothermic reaction will draw thermal energy(heat) from the system to increase potential energy(chemical bonds). But there has to be an activation energy well for the endothermic reaction to happen. The difference between exothermic and endothermic reactions is that the latter will release less thermal energy than the activation energy...
  • #1
brainstorm
568
0
As I understand it, thermodynamics indicates that heat will dissipate from hotter parts of a system to cooler parts. This is why, for example, it is impossible to harness latent heat to create energy if there is no heat-sink to move the heat from relative warmth to cold.

What has me puzzled is whether radiation also somehow responds to thermal differential/equilibrium. With conduction/convection, it is logical that the kinetic energy of particle motion would dissipate insofar as particles collide with other particles and transfer momentum. But why would radiation cease to be emitted because thermal equilibrium between emitter and absorber was reached?

Don't particles keep emitting radiation even when thermal equilibrium within the system is reached? If so, wouldn't it be possible to somehow capture this latent radiation? Admittedly, this sounds impossible to me, but I'm trying to understand exactly why instead of going with my intuition.
 
Science news on Phys.org
  • #2
Don't particles keep emitting radiation even when thermal equilibrium within the system is reached?
Yes. See thermal radiation, black-body radiation.

If so, wouldn't it be possible to somehow capture this latent radiation?
Not if your capturing device is in thermal equilibrium with the system(is also radiating).
 
  • #3
log0 said:
Yes. See thermal radiation, black-body radiation.


Not if your capturing device is in thermal equilibrium with the system(is also radiating).

This requirement isn't a prohibitive barrier - it can be overcome
 
  • #4
Ok, so consider the following scenario:

A fan is placed in a closed room with no windows. The fan is powered by a photovoltaic cell that is capable of running on ambient room radiation (I realize that this would be very little power).

As the fan converts room radiation into mechanical motion, would the temperature of the room decrease? Assume that there is a perfect energy barrier that prevents any new heat entering the room from outside.

Would the fan continue to run until the room reached absolute zero, provided the photovoltaic cell was sensitive to low enough levels of radiation?
 
  • #5
photovoltaic cell that is capable of running on ambient room radiation
Such a cell is impossible. It would be able to run on its own thermal radiation and cool itself to absolute zero.
 
  • #6
log0 said:
Such a cell is impossible. It would be able to run on its own thermal radiation and cool itself to absolute zero.

Good point. Interesting. So could one say that for radiation to be dissipated from a system, their has to be disequilibrium between the source-level of radiation and that of the receptor cell? In other words, there is such a thing as radiation entropy?
 
  • #7
Dissipation can only occur if the system is in a disequilibrium. It will move the system towards equilibrium, increase entropy. In order for work to be performed/extracted there has to be some kind of disequilibrium(gradient).
 
  • #8
log0 said:
Dissipation can only occur if the system is in a disequilibrium. It will move the system towards equilibrium, increase entropy. In order for work to be performed/extracted there has to be some kind of disequilibrium(gradient).

So what drives an endothermic reaction? Shouldn't there be some way to produce an "endothermic machine" that absorbs radiation by dissipating energy from a photovoltaic cell that is then primed to receive new ambient radiation to replace it? I know this was already explained, but I don't see why the device couldn't create the radiation disequilibrium required to draw energy out of the photocell, if it drew ambient radiation from the cell itself leaving the particles in the cell in disequilibrium to receive new photons from outside the circuit. Isn't there such a thing as a one-way valve for electric current?
 
  • #9
Exothermic and endothermic reactions are methods to create a disequilibrium. But they are not perpetual. You are sharing heat for chemical bond energy. You'll still increase the entropy of the system.
 
Last edited:
  • #10
log0 said:
Exothermic and endothermic reactions are methods to create a disequilibrium. But they are not perpetual. You are sharing heat for chemical bond energy. You'll still increase the entropy of the system.

The reason I mentioned endothermic reactions was that these reaction somehow seem to be able to draw ambient heat out of a system otherwise in equilibrium. I was positing that if chemical potential is somehow able to draw energy out of a system in equilibrium, so could a mechanical system of some sort. But are you saying that the ability to draw heat out of a system is the result of potential energy stored in the chemical structure of the ingredients of the reaction? Is an endothermic reaction somehow actually expending more energy than it is drawing out of its environment?
 
  • #11
No. The endothermic reaction will draw thermal energy(heat) from the system to increase potential energy(chemical bonds). But there has to be an activation energy well for the endothermic reaction to happen. The difference between exothermic and endothermic reactions is that the latter will release less thermal energy than the activation energy of the reaction.
 
  • #12
log0 said:
No. The endothermic reaction will draw thermal energy(heat) from the system to increase potential energy(chemical bonds). But there has to be an activation energy well for the endothermic reaction to happen. The difference between exothermic and endothermic reactions is that the latter will release less thermal energy than the activation energy of the reaction.
Ok, so then why wouldn't it be possible to have a mechanical system that works similarly; i.e. using a small activation energy to setting an endothermic or radiation-consuming circuit into motion that draws energy out of a system in equilibrium and converts it into mechanical motion or something else?
 
  • #13
Once again, reactions are not perpetual. They will stop after reaching a new equilibrium. It doesn't matter if they are exo or endothermic.

Edit: With equilibrium here I mean chemical(reaction) equilibrium not the thermal one.
 
Last edited:
  • #14
log0 said:
Once again, reactions are not perpetual. They will stop after reaching a new equilibrium. It doesn't matter if they are exo or endothermic.

Edit: With equilibrium here I mean chemical(reaction) equilibrium not the thermal one.

Ok, nothing is perpetual. Now I'm trying to figure out what the details of the process are and what the limiting factors are and how they work.
 

1. What is the difference between radiation and conduction in thermal equilibrium?

In thermal equilibrium, both radiation and conduction are methods of heat transfer. Radiation is the transfer of heat through electromagnetic waves, while conduction is the transfer of heat through direct contact between materials. The main difference is that radiation does not require a medium to transfer heat, while conduction does.

2. Which method of heat transfer is more efficient in thermal equilibrium?

This depends on the specific situation. In general, radiation is more efficient over long distances or in a vacuum, while conduction is more efficient in solids or in direct contact between materials.

3. Can different materials have different rates of heat transfer through radiation and conduction?

Yes, different materials have different properties that affect their ability to transfer heat. Some materials are better at radiating heat, while others are better at conducting it. This is why some materials are used as insulators to prevent heat transfer through conduction.

4. How does temperature affect radiation and conduction in thermal equilibrium?

Temperature affects both methods of heat transfer in different ways. In radiation, the amount of heat transferred increases with temperature, as hotter objects emit more electromagnetic waves. In conduction, the rate of heat transfer also increases with temperature, as higher temperatures cause particles to vibrate more, leading to faster heat transfer.

5. Is thermal equilibrium always achieved through a balance of radiation and conduction?

No, thermal equilibrium can also be achieved through other methods of heat transfer, such as convection. In some situations, one method may dominate over the other, depending on factors like distance, material properties, and temperature differences. However, in most cases, a combination of radiation and conduction is involved in achieving thermal equilibrium.

Similar threads

  • Thermodynamics
Replies
2
Views
1K
  • Thermodynamics
Replies
2
Views
1K
Replies
13
Views
3K
Replies
16
Views
12K
Replies
26
Views
3K
Replies
3
Views
2K
  • Thermodynamics
Replies
4
Views
1K
Replies
10
Views
3K
  • Thermodynamics
Replies
6
Views
1K
  • Thermodynamics
Replies
20
Views
9K
Back
Top