1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I When/How does thermal radiation stop (if it stops) and conduction

  1. Jul 21, 2018 #1
    Consider two solid objects in the vacuum (of different materials, if you will) at different temperatures approaching each other until they make "perfect contact" through flat surfaces (no gaps or defects, so that thermal contact conductance effects are absent, even though interfacial thermal resistance may still be present).
    Of course, before making contact, they exchange heat via electromagnetic radiation. My question is: is this heat exchange via thermal radiation still present once the bodies are making contact with each other and exchanging heat via thermal conduction? (Please explain what's going on in terms of the constituent particles of the bodies.)
     
  2. jcsd
  3. Jul 21, 2018 #2
    When the two surfaces make contact the now combined object will quickly reach a temperature overall that is somewhere in between that of the originally separate objects.
    (unless one of the objects is composed of material with extremely low thermal conductance.)
    The combined object will still emit radiative heat assuming there are no other external heat sources to complicate things.
     
  4. Jul 21, 2018 #3

    anorlunda

    Staff: Mentor

    I think what the OP is trying to ask is about IR radiation, even internally in an object. Certainly, an atom can emit a photon which is absorbed by a neighboring atom. But I suspect that is included in what we call heat conduction, or ignored when conduciton is active.

     
  5. Jul 21, 2018 #4
    To add to that, from the same Wikipedia article: "In solids, conduction is mediated by the combination of vibrations and collisions of molecules, of propagation and collisions of phonons ([sic], not photons), and of diffusion and collisions of free electrons." So, whoever wrote that did not consider exchanged photons as part of thermal conduction. However, I guess that when measuring thermal conductivity in the laboratory it's hard to isolate those effects, so that they are lumped all together and called "thermal conduction" (I emphasize I'm guessing).
    Further information: when they talk about combined conduction-radiation in that Wikipedia article, I think they refer to semi-transparent media, in the sense of this article from thermopedia: Coupled (combined) radiation and conduction.
     
  6. Jul 21, 2018 #5

    CWatters

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    If the objects are transparent to IR I see no reason why thermal radiation from one to the other shouldn't occur as well as conduction.
     
  7. Jul 21, 2018 #6
    I almost got the full answer from anorlunda above, when he/she said "Certainly, an atom can emit a photon which is absorbed by a neighboring atom." (as a mechanical engineer, I'm ignorant about physics at this level, so this phrase alone was good guidance.)
    Let met share the answer I got from physics.stackexchange.com by user Thomas Lee Abshier ND. Here I include a fragment:
    ...as long as the absorption/emission frequencies of two substances overlap, radiation can emit and absorb between the two masses. In summary, "Will two materials continue to exchange radiation energy once they were in intimate thermal conductive contact." The answer is yes.​
     
  8. Jul 21, 2018 #7

    256bits

    User Avatar
    Gold Member

    Out of curiosity, if a substance is transparent to a frequency, what are the chances that radiation of that frequency can be produced?
     
  9. Jul 22, 2018 #8

    256bits

    User Avatar
    Gold Member

    You are looking at depth of penetration of radiation, and that is substance and frequency dependent. As an example, lead is commonly designated as the material to use for absorption of ionizing radiation, rather than say wood. Gamma or x-ray will penetrate into lead measured in mm, while for concrete it is cm.
     
  10. Jul 22, 2018 #9

    hilbert2

    User Avatar
    Science Advisor
    Gold Member

    Most of the energy that is transferred from the interior of the sun to its surface is in the form of thermal radiation, despite the high density of solar matter. However, the average time it takes for a photon to diffuse from the core to the surface is quite long. So, it is possible to have radiative heat transfer inside condensed phase objects.
     
  11. Jul 22, 2018 #10

    anorlunda

    Staff: Mentor

    @katelr, the way you worded your original post, it is not clear if you are asking about radiation heat transfer between two objects, or internal heat transfer within one object. In the OP, you stuck two together as if to make one.

    Please clarify.
     
  12. Jul 22, 2018 #11
    i posted a thread about infrared thermometry remote sensing
    https://www.physicsforums.com/threads/infrared-thermometry-remote-sensing.951806/
    based on https://en.wikipedia.org/wiki/Stefan–Boltzmann_law
    $$ j*= \sigma T^4 $$
    the amount of energy heat radiated on a (black) body is the temperature in kelvins to the power of 4.
    my thoughts are that when 2 bodies are in contact, both conduction and (black body) radiation/absorption continues
    the relative amount of energy/heat exchange would thus be mainly be determined by the temperature of the bodies.
    at low temperatures conduction dominates, at high temperatures (black body) radiation dominates
     
  13. Sep 12, 2018 #12
    I'm not sure where the lack of clarity is, so I'm going to talk about a practical implication: insulation of home attics. In modern practice it is customary to place, facing the ceiling, a foil of aluminium inside the attic to reflect the thermal radiation coming from the ceiling. Products like this are commonplace. Turns out that there happens to be some talking around the internet saying that the foil of aluminium should not touch the ceiling arguing that it would otherwise not reflect the radiation. (The fact that, once in contact with the ceiling, it will transfer its heat by conduction to the aluminium is a different problem we need not talk about.) So, my post comes from wondering why the reflection would stop once the bodies are in contact.
     
  14. Sep 12, 2018 #13
    Actually asking or pointing out the physics? Anyhow, your implication is correct. Emissivity and absorption are two sides of the same coin. Low absorption at a given wavelength (highly transparent or highly reflective whether specular or scattering) means low emissivity at that wavelength, i.e. low thermal glow per Kirchoff’s law.
     
  15. Sep 13, 2018 #14

    256bits

    User Avatar
    Gold Member

    That is the way I understood.
    Really I was actually pondering, or asking, if there ever was a gothcha !
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted