Raqandre's question at Yahoo Answers regarding a Cauchy-Euler IVP

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Ivp
Click For Summary
SUMMARY

The initial value problem (IVP) given by the equation x²y" + xy' - y = 0, with initial conditions y(1) = 0 and y'(1) = 2, can be solved using the method of guessing a solution of the form y = x^r. Substituting this form into the differential equation leads to the characteristic equation r² - 1 = 0, yielding the general solution y(x) = c₁x + c₂x⁻¹. Applying the initial conditions results in the specific solution y(x) = x - x⁻¹.

PREREQUISITES
  • Understanding of second-order ordinary differential equations (ODEs)
  • Familiarity with the Cauchy-Euler equation
  • Knowledge of initial value problems (IVPs)
  • Basic algebra and manipulation of equations
NEXT STEPS
  • Study the method of solving Cauchy-Euler equations in depth
  • Learn about the application of initial conditions in solving differential equations
  • Explore numerical methods for solving ODEs
  • Investigate the implications of different forms of solutions for IVPs
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on differential equations, as well as educators teaching ODEs and IVPs.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve the initial value problem x^2 y" + xy' - y = 0?

solve the initial value problem x^2 y" + xy' - y = 0 with initial conditions: y(1)= 0 & y'(1) = 2

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Re: raqandre's question at Yahoo! Answers regarding a Cauchy-euler IVP

Hello raqandre,

We are given the IVP:

$$x^2y"+xy'-y=0$$ where $$y'(1)=2,\,y(1)=0$$

One way to proceed is the guess a solution of the form:

$$y=x^r$$

and so:

$$y'=rx^{r-1}$$

$$y''=r(r-1)x^{r-2}$$

Now, substituting into the ODE gives us:

$$x^2\left(r(r-1)x^{r-2} \right)+x\left(rx^{r-1} \right)-\left(x^r \right)=0$$

$$x^r\left(r(r-1)+r-1 \right)=0$$

$$x^r\left(r^2-1 \right)=0$$

$$x^r(r+1)(r-1)=0$$

Thus, the general solution is:

$$y(x)=c_1x+c_2x^{-1}$$

Differentiating, we find:

$$y'(x)=c_1-c_2x^{-2}$$

Using the initial conditions, we get the linear system:

$$y'(1)=c_1-c_2=2$$

$$y(1)=c_1+c_2=0$$

From which we may determine:

$$c_1=1,\,c_2=-1$$

Thus, the solution satisfying the given IVP is:

$$y(x)=x-x^{-1}=x-\frac{1}{x}$$
 
Re: raqandre's question at Yahoo! Answers regarding a Cauchy-euler IVP

MarkFL said:
Hello raqandre,

We are given the IVP:

$$x^2y"+xy'-y=0$$ where $$y'(1)=2,\,y(1)=0$$

One way to proceed is the guess a solution of the form:

$$y=x^r$$

and so:

$$y'=rx^{r-1}$$

$$y''=r(r-1)x^{r-2}$$

Now, substituting into the ODE gives us:

$$x^2\left(r(r-1)x^{r-2} \right)+x\left(rx^{r-1} \right)-\left(x^r \right)=0$$

$$x^r\left(r(r-1)+r-1 \right)=0$$

$$x^r\left(r^2-1 \right)=0$$

$$x^r(r+1)(r-1)=0$$

Thus, the general solution is:

$$y(x)=c_1x+c_2x^{-1}$$

Differentiating, we find:

$$y'(x)=c_1-c_2x^{-2}$$

Using the initial conditions, we get the linear system:

$$y'(1)=c_1-c_2=2$$

$$y(1)=c_1+c_2=0$$

From which we may determine:

$$c_1=1,\,c_2=-1$$

Thus, the solution satisfying the given IVP is:

$$y(x)=x-x^{-1}=x-\frac{1}{x}$$

Thank you.
 
Glad to help and welcome to MHB! (Cool)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
7K