Rate of convergence for functions

Click For Summary
The discussion focuses on defining the rate of convergence for functions, particularly in the context of approximating a function F using a set of functions G. The convergence is analyzed as the limit of G(x, p(k)) approaching F(x) as k approaches zero. The rate of convergence is determined by how quickly the difference |G(x, p(k)) - F(x)| approaches zero, which requires establishing a norm, such as the maximum over all x. The concept of an infinite rate of convergence implies that the approximation improves extremely rapidly, potentially indicating that G closely matches F almost immediately as k decreases. Understanding these definitions is crucial for applying numerical analysis effectively.
user11
Messages
1
Reaction score
0
I am not very familiar with terms from numerical analysis, thus I do understand the definition for convergence rate from http://en.wikipedia.org/wiki/Rate_of_convergence" . Still, here the definition appears only for sequences.

Which is the definition for rate of convergence for functions? For instance: for I closed and bounded set, and for O discrete set, a function F:I->O, x-> F(x) is approximated by a set of functions G: I X R+ ->O , (x,p(k)) ->G(x,p(k)), where p: R+->R+, k ->p(k) is a monotonic decreasing function, and R+ denotes the positive real numbers. The set of functions G converge towards F, i.e. lim_{k->0} G(x,p(k))=F(x). Which is the convergence rate for G?
Any idea on how rate of convergence would be defined in this way? What does it mean if the rate of convergence is infinity in this case?

Thank you very much for your help.
 
Last edited by a moderator:
Physics news on Phys.org
The rate of convergence would be how fast |G(x,p(k))-F(x)| -> 0 as a function of k. Since we are dealing with functions, you need to define a norm, for example max over all x.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K