MHB Ratio of the Area of Similar Polygons

Click For Summary
The perimeter of the smaller polygon is calculated to be 39 cm, confirming the initial finding. The ratio of the lengths of the corresponding sides of the similar polygons is 3 to 7. Consequently, the ratio of their areas is determined to be 9 to 49, as area scales with the square of the linear dimensions. This relationship highlights the consistent proportionality between similar shapes. Understanding these ratios is essential for solving problems involving similar polygons.
Hobbes1
Messages
1
Reaction score
0
Two corresponding sides of two similar polygons have lengths 3 and 7. the perimeter of the larger polygon is 91 cm. What is the perimeter of the smaller polygon? What is the ratio of their areas?

I believe I have found the perimeter of the smaller polygon (39), but I can't figure out the areas.

Thanks.
 
Mathematics news on Phys.org
I will use the subscript $S$ for the smaller polygon, and $L$ for the larger...

For similar planar shapes, the ratio of any corresponding linear measures will be the same. And so the perimeter $P_S$ of the smaller polygon will be:

$$P_S=\frac{3}{7}P_L=\frac{3}{7}\cdot91=\frac{3\cdot7\cdot13}{7}=3\cdot13=39$$

So, you did find the correct value there. (Yes)

Because the area of a planar shape varies as the square of any of its linear measures, then we will find:

$$\frac{A_S}{A_L}=\left(\frac{3}{7}\right)^2=\frac{9}{49}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K