MHB Ratio of the Area of Similar Polygons

AI Thread Summary
The perimeter of the smaller polygon is calculated to be 39 cm, confirming the initial finding. The ratio of the lengths of the corresponding sides of the similar polygons is 3 to 7. Consequently, the ratio of their areas is determined to be 9 to 49, as area scales with the square of the linear dimensions. This relationship highlights the consistent proportionality between similar shapes. Understanding these ratios is essential for solving problems involving similar polygons.
Hobbes1
Messages
1
Reaction score
0
Two corresponding sides of two similar polygons have lengths 3 and 7. the perimeter of the larger polygon is 91 cm. What is the perimeter of the smaller polygon? What is the ratio of their areas?

I believe I have found the perimeter of the smaller polygon (39), but I can't figure out the areas.

Thanks.
 
Mathematics news on Phys.org
I will use the subscript $S$ for the smaller polygon, and $L$ for the larger...

For similar planar shapes, the ratio of any corresponding linear measures will be the same. And so the perimeter $P_S$ of the smaller polygon will be:

$$P_S=\frac{3}{7}P_L=\frac{3}{7}\cdot91=\frac{3\cdot7\cdot13}{7}=3\cdot13=39$$

So, you did find the correct value there. (Yes)

Because the area of a planar shape varies as the square of any of its linear measures, then we will find:

$$\frac{A_S}{A_L}=\left(\frac{3}{7}\right)^2=\frac{9}{49}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top