Ratio test with an integer power of an in numerator

Click For Summary
SUMMARY

The discussion centers on determining the convergence of the series $$\sum_{n = 1}^{\infty} \frac{2^n}{n^{100}}$$ using the ratio test. The limit evaluated is $$\lim_{{n}\to{\infty}} \frac{2^{n + 1}\cdot n^{100}}{2^n \cdot (n + 1)^{100}}$$, which simplifies to $$\frac{2^{n + 1}}{2^n} = 2$$. The conclusion drawn is that the series diverges because the exponential term $2^n$ grows significantly faster than the polynomial term $n^{100}$, confirming that the series diverges due to the dominance of the geometric series.

PREREQUISITES
  • Understanding of the Ratio Test for series convergence
  • Familiarity with limits and their evaluation
  • Knowledge of exponential and polynomial growth rates
  • Basic concepts of infinite series and convergence criteria
NEXT STEPS
  • Study the Ratio Test in detail, including its applications and limitations
  • Learn about the comparison test for series convergence
  • Explore the behavior of exponential functions versus polynomial functions
  • Investigate other convergence tests such as the Root Test and Integral Test
USEFUL FOR

Mathematicians, students studying calculus or analysis, and anyone interested in series convergence and divergence techniques.

tmt1
Messages
230
Reaction score
0
I have

$$\sum_{n = 1}^{\infty} \frac{2^n}{n^{100}}$$

and I need to find whether it converges or diverges.

I can use the ratio test to get:

$$\lim_{{n}\to{\infty}} \frac{2^{n + 1}\cdot n^{100}}{2^n \cdot (n + 1)^{100}}$$

But I'm not sure how to get the limit from this.

I know the limit of $\frac{n^{100}}{(n + 1)^{100}}$ would be $1$. But how would I get the limit of $\frac{2^{n + 1}}{2^n}$?
 
Physics news on Phys.org
tmt said:
I have

$$\sum_{n = 1}^{\infty} \frac{2^n}{n^{100}}$$

and I need to find whether it converges or diverges.

I can use the ratio test to get:

$$\lim_{{n}\to{\infty}} \frac{2^{n + 1}\cdot n^{100}}{2^n \cdot (n + 1)^{100}}$$

But I'm not sure how to get the limit from this.

I know the limit of $\frac{n^{100}}{(n + 1)^{100}}$ would be $1$. But how would I get the limit of $\frac{2^{n + 1}}{2^n}$?
You don't need to worry about it.

[math]\frac{2^{n + 1}}{2^n} = 2[/math]

-Dan
 
tmt said:
I have

$$\sum_{n = 1}^{\infty} \frac{2^n}{n^{100}}$$

and I need to find whether it converges or diverges.

I can use the ratio test to get:

$$\lim_{{n}\to{\infty}} \frac{2^{n + 1}\cdot n^{100}}{2^n \cdot (n + 1)^{100}}$$

But I'm not sure how to get the limit from this.

I know the limit of $\frac{n^{100}}{(n + 1)^{100}}$ would be $1$. But how would I get the limit of $\frac{2^{n + 1}}{2^n}$?

I'm hoping that your intuition at least told you that you should be expecting the series to be divergent, as the exponential part would be a divergent geometric series, and this part will end up much, much greater than the polynomial...
 
Prove It said:
I'm hoping that your intuition at least told you that you should be expecting the series to be divergent, as the exponential part would be a divergent geometric series, and this part will end up much, much greater than the polynomial...

I suppose $2^n$ will be much greater than $n^{100}$, and $\sum_{}^{} 2^n$, is of course divergent, as $2 > 1$. So, even though $\sum_{}^{} \frac{1}{n^{100}}$ is convergent, it would be outpaced by $\sum_{}^{} 2^n$. Is this what you mean?
 
tmt said:
I suppose $2^n$ will be much greater than $n^{100}$, and $\sum_{}^{} 2^n$, is of course divergent, as $2 > 1$. So, even though $\sum_{}^{} \frac{1}{n^{100}}$ is convergent, it would be outpaced by $\sum_{}^{} 2^n$. Is this what you mean?

Exactly! :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K