Perelman
- 19
- 1
Dick said:Hmm. Ok, ##a=(a_1,a_2,a_3,...)##, a sequence that converges to 0. How about if you define ##u_k=(a_1,a_2,...,a_k,0,0,0,...)##? What is the limit of the sequence ##u_k##?
it will converges to ##a##, i think i found some kind of proof now.
let ##a = (a_1,a_2,a_3,a_k..)## be a zeroconvergent sequence.
then for all ##n,m > N , d(a_n, a_m)<\epsilon##, for some ##N## then
let ##n## be ##n+1## and ##m## be ##n+a## s.t ##d(a_{n+1}, a_{n+a})<\epsilon.##
then the sequence of sequences ##L = (a_1,a_2,...,a_k,0,0,0,...)## for k=1 to infinity in ##\ell## would converge to ##a##
because ##d(L_n , L_{n+a}) = sup|L_n - L_{n+a}|## which all the elements up to and including ##L_n## turns zero and you end up with the supremum of the difference, ##L_{n+1}## must be the supremum, since its a decreasing sequence.
since ##L_{n+1}## is the ##a_{n+1}## of the sequence ##a##, and ## L_{n+a} = a_{n+a} ## then
##d(L_{n+1} , L_{n+a}) < \epsilon##. for all ##n>N##