Real conjugates of complex numbers?

Click For Summary
SUMMARY

This discussion clarifies the concept of conjugates in complex numbers, specifically addressing the validity of "real conjugates." The imaginary conjugates of the complex numbers A=(-2+i), B=(2+3i), C=(-4-3i), and D=(-4+i) are correctly identified as \overline{A}=(-2-i), \overline{B}=(2-3i), \overline{C}=(-4+3i), and \overline{D}=(4-i). However, the proposed real conjugates, defined as \overline{A}=(2+i), \overline{B}=(-2+3i), \overline{C}=(4-3i), and \overline{D}=(4+i), are not standard and lack practical application. The discussion concludes that complex conjugation, which reflects across the real axis, preserves both addition and multiplication, while the proposed real conjugation does not.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with complex conjugation
  • Basic knowledge of vector spaces, particularly in the Argand plane
  • Comprehension of multiplication and addition in complex fields
NEXT STEPS
  • Study the properties of complex conjugation in detail
  • Explore the implications of complex multiplication and addition
  • Investigate the geometric interpretation of complex numbers in the Argand plane
  • Learn about field structures in algebra, particularly in relation to complex numbers
USEFUL FOR

Mathematicians, educators, and students studying complex analysis, particularly those interested in the properties and applications of complex numbers and their conjugates.

samir
Messages
27
Reaction score
0
Hi!

We have discussed complex numbers in class and their conjugates. From what I understand only the imaginary unit is conjugated. But I wonder if there are such things as real conjugates of complex numbers?

Given the following points:

$$A=(-2+i)$$
$$B=(2+3i)$$
$$C=(-4-3i)$$
$$D=(-4+i)$$

I would argue that their imaginary conjugates are:

$$\overline{A}=(-2-i)$$
$$\overline{B}=(2-3i)$$
$$\overline{C}=(-4+3i)$$
$$\overline{D}=(4-i)$$

I would argue that their real conjugates are:

$$\overline{A}=(2+i)$$
$$\overline{B}=(-2+3i)$$
$$\overline{C}=(4-3i)$$
$$\overline{D}=(4+i)$$

Are these valid statements? Do we ever seek real conjugates of complex numbers? If not, why not? If a problem description only states that we seek a "conjugate" of a complex number, is it always implied that it is the imaginary conjugate we seek?

I have plotted the imaginary conjugates in the following image. (You will have to "imagine" the real conjugates.)

View attachment 5481
 

Attachments

  • 2016-04-04-im-conjugate.png
    2016-04-04-im-conjugate.png
    12.4 KB · Views: 117
Last edited:
Physics news on Phys.org
I think I understand what you are trying to say, but no: such a concept is hardly ever used.

One can think of conjugation as reflection about the real axis, and (from symmetry) one might want to investigate the usefulness of reflection about the imaginary axis.

As far as *addition* goes, they appear to be on equal footing (this is in keeping with regarding complex numbers as a two-dimensional vector space over the reals-that is, the Argand plane). But the reflection you are considering isn't as useful as "normal" conjugation for this very important reason:

Complex conjugation respects complex multiplication AS WELL AS addition. That is:

$\overline{zw} = \overline{z}\cdot \overline{w}$.

This is NOT the case for the "other reflection".

For example, let's multiply $2 + 3i$ and $1 - i$:

$(2 + 3i)(1 - i) = 2 - 2i + 3i -3i^2 = 2 - i - (-3) = 5 + i$.

Reflecting across the imaginary axis, we have $-5 + i$.

If we reflect both complex numbers first, we have: $-2 + 3i$ and $-1 - i$. Now we multiply and get:

$(-2 + 3i)(-1 - i) = (-2)(-1) + (-2)(-i) + 3i(-1) - 3i^2 = 2 + 2i - 3i - (-2) = 5 - i$.

As you can see the two results are not equal.

It turns out that the map $z \mapsto \overline{z}$ (or $a + ib \mapsto a - ib$, if you prefer) preserves the field structure of the complex numbers, and $a + ib \mapsto -a + ib$ does not. Put another way, in $\Bbb C$, the complex numbers $i$ and $-i = i^3 = \dfrac{1}{i}$ are interchangeable (if we do so "globally"), but $1$ and $-1$ have DIFFERENT algebraic properties ($1$ is the multiplicative identity, $-1$ is not), and switching them "ruins multiplication".
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K