MHB Real conjugates of complex numbers?

samir
Messages
27
Reaction score
0
Hi!

We have discussed complex numbers in class and their conjugates. From what I understand only the imaginary unit is conjugated. But I wonder if there are such things as real conjugates of complex numbers?

Given the following points:

$$A=(-2+i)$$
$$B=(2+3i)$$
$$C=(-4-3i)$$
$$D=(-4+i)$$

I would argue that their imaginary conjugates are:

$$\overline{A}=(-2-i)$$
$$\overline{B}=(2-3i)$$
$$\overline{C}=(-4+3i)$$
$$\overline{D}=(4-i)$$

I would argue that their real conjugates are:

$$\overline{A}=(2+i)$$
$$\overline{B}=(-2+3i)$$
$$\overline{C}=(4-3i)$$
$$\overline{D}=(4+i)$$

Are these valid statements? Do we ever seek real conjugates of complex numbers? If not, why not? If a problem description only states that we seek a "conjugate" of a complex number, is it always implied that it is the imaginary conjugate we seek?

I have plotted the imaginary conjugates in the following image. (You will have to "imagine" the real conjugates.)

View attachment 5481
 

Attachments

  • 2016-04-04-im-conjugate.png
    2016-04-04-im-conjugate.png
    12.4 KB · Views: 104
Last edited:
Mathematics news on Phys.org
I think I understand what you are trying to say, but no: such a concept is hardly ever used.

One can think of conjugation as reflection about the real axis, and (from symmetry) one might want to investigate the usefulness of reflection about the imaginary axis.

As far as *addition* goes, they appear to be on equal footing (this is in keeping with regarding complex numbers as a two-dimensional vector space over the reals-that is, the Argand plane). But the reflection you are considering isn't as useful as "normal" conjugation for this very important reason:

Complex conjugation respects complex multiplication AS WELL AS addition. That is:

$\overline{zw} = \overline{z}\cdot \overline{w}$.

This is NOT the case for the "other reflection".

For example, let's multiply $2 + 3i$ and $1 - i$:

$(2 + 3i)(1 - i) = 2 - 2i + 3i -3i^2 = 2 - i - (-3) = 5 + i$.

Reflecting across the imaginary axis, we have $-5 + i$.

If we reflect both complex numbers first, we have: $-2 + 3i$ and $-1 - i$. Now we multiply and get:

$(-2 + 3i)(-1 - i) = (-2)(-1) + (-2)(-i) + 3i(-1) - 3i^2 = 2 + 2i - 3i - (-2) = 5 - i$.

As you can see the two results are not equal.

It turns out that the map $z \mapsto \overline{z}$ (or $a + ib \mapsto a - ib$, if you prefer) preserves the field structure of the complex numbers, and $a + ib \mapsto -a + ib$ does not. Put another way, in $\Bbb C$, the complex numbers $i$ and $-i = i^3 = \dfrac{1}{i}$ are interchangeable (if we do so "globally"), but $1$ and $-1$ have DIFFERENT algebraic properties ($1$ is the multiplicative identity, $-1$ is not), and switching them "ruins multiplication".
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top