Really difficult calculus problem

  • Thread starter Thread starter christos.miko
  • Start date Start date
  • Tags Tags
    Calculus
Click For Summary
The discussion revolves around the existence of a differentiable function f(x) that satisfies the conditions |f(x)| < 2 and f(x)f'(x) ≥ sin(x). Participants explore the implications of integrating the inequality and derive that [f(π)]² - [f(0)]² ≥ 4. There is uncertainty about whether such a function exists and what the derived inequalities indicate. Suggestions include performing a definite integral from 0 to π to clarify the conclusions. The conversation highlights the complexity of the problem and the need for further exploration of potential functions.
christos.miko
Messages
2
Reaction score
0
Is there a function f , differentiable for all real x, such that | f (x) |< 2 and f (x)f ′ (x) ≥ sin(x)?I noticed that [f(x)*f(x)]' = 2f(x)*f'(x) = [f(x)]^2

So I tried multiplying that inequality by 2.
2f (x)f ′ (x) ≥ 2sin(x)

Then I tried integrating both sides.

[f(x)]^2 ≥ -2cos(x). This gives us [f(pi)]^2-[f(0)]^2 ≥ 4. I am not sure what this tells me. Do I need to find a function with this property? I also need

I honestly have no idea if such a function even exists. Does anyone know what to do?

f i do what Dick said, and integrate both sides from 0 to pi.

We will get [f(pi)]^2-[f(0)]^2 ≥ -2[cos(pi) - cos(0)]

This gives us [f(pi)]^2-[f(0)]^2 ≥ 4. I am not sure what this tells me. Do I need to find a function with this property? I also need | f (x) |< 2
 
Last edited:
Physics news on Phys.org
You are being a little sloppy. Do a definite integral from 0 to a on both sides of 2*f(x)*f'(x)>=2*sin(x). Put a=pi. What do you conclude?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K