Recommendations for Rigorous Multivariable/Vector Calculus Books

Click For Summary
SUMMARY

For rigorous multivariable and vector calculus study, recommended texts include Tom Apostol's "Calculus: Vol 2" and Michael Spivak's "Calculus on Manifolds." While Spivak's text is dense, it is complemented well by prior knowledge of vector calculus. C. H. Edwards, Jr.'s "Advanced Calculus of Several Variables" is noted for being more accessible. Additionally, Hubbard and Hubbard's "Vector Calculus, Linear Algebra, and Differential Forms" and Marsden and Tromba's "Vector Calculus" are also highly regarded options.

PREREQUISITES
  • Understanding of single-variable calculus
  • Familiarity with basic linear algebra concepts
  • Knowledge of vector calculus fundamentals
  • Ability to engage with mathematical proofs
NEXT STEPS
  • Explore Tom Apostol's "Calculus: Vol 2" for a comprehensive understanding of calculus and linear algebra
  • Study Michael Spivak's "Calculus on Manifolds" for advanced topics in calculus
  • Investigate C. H. Edwards, Jr.'s "Advanced Calculus of Several Variables" for a more approachable text
  • Review Hubbard and Hubbard's "Vector Calculus, Linear Algebra, and Differential Forms" for an integrated approach to these subjects
USEFUL FOR

Students and educators in mathematics, particularly those pursuing advanced studies in multivariable calculus and vector calculus, as well as self-learners seeking rigorous mathematical texts.

avec_holl
Messages
15
Reaction score
0
Does anyone have some suggestions for a good multi-variable/vector calculus book? I have a fairly reasonable math background - managed to self-teach myself calculus through Micahael Spivak's text Calculus pretty successfully - and I'm looking for something that's fairly rigorous. One of my math teachers recommended either Tom Apostol's text Calculus: Vol 2 or Spivak's text Calculus on Manifolds but I'm not sure if these texts are going to be beyond me (mathematically speaking). Price isn't really an issue but a cheaper text would be nicer. So, does anyone have some suggestions?
 
Physics news on Phys.org
Spivak is extremely dense. You might take a look at C. H. Edwards, Jr. Advanced Calculus of Several Variables, which is friendlier.
 
Spivak's "Calculus on Manifolds" is an excellent text, although it is better complemented if you learn some vector calculus first. I like Hubbard/Hubbard's "Vector Calculus, Linear Algebra, and Differential Forms" myself.
 
I just looked into Vector Calculus, Linear Algebra, and Differential Forms and it looks like an excellent textbook - very well reviewed. Thanks for the suggestion!
 
You might also want to take a look at Vector Calculus by Marsden and Tromba, although lots of proofs of theorems are omitted (or only accessible on a website).
Do you know any linear algebra? Apostol's Vol.2 covers that. Keep in mind that Apostol's Vol.2 and Spivak's Calculus on Manifolds cover completely different subjects, so I wonder why your math teacher recommended one of those (as if they were interchangeable). If you think Spivak is too dense, there is this book Analysis on Manifolds by Munkres, which essentially is an expanded (less dense) version of Spivak.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 12 ·
Replies
12
Views
10K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 30 ·
2
Replies
30
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 26 ·
Replies
26
Views
6K
  • · Replies 4 ·
Replies
4
Views
7K