“Recursive” Sequence Reaching Every Open Interval

  • Thread starter Thread starter Don Jon
  • Start date Start date
  • Tags Tags
    Interval Sequence
Click For Summary
The discussion centers on a particle's movement on the number line, starting from the origin and moving to specific points defined by a recursive sequence. It is established that the particle can approach any point within the open interval (a-1, a) by taking many consecutive steps, particularly highlighting the case when a=0.5, where the distance can be halved with each step. Participants express curiosity about how to fill in the gaps between reachable points and the binary approach for a=0.5. The conversation also references properties of iterated function systems, emphasizing the importance of understanding the union of the ranges of the defined functions. Overall, the thread explores the mathematical implications of the particle's movement and its ability to reach every point in the specified interval.
Don Jon
Messages
2
Reaction score
0
Thread moved from the technical forums, so no Homework Template is shown
Let x denote the position of a particle on the number line. From x, it can move to either the point a-a2+ax or to the point x-ax-a+a2 for some fixed 0<a<1. Suppose the particle starts at the origin. Prove that any open interval that is a subset of the interval (a-1,a) contains a point that the particle can reach.

It’s fairly clear the particle can get arbitrarily close to the origin (by moving in one direction continuously and then suddenly swapping). Thus you can get arbitrarily close to a point that is reached by moving in one direction continuously. But I don’t know how to fill in the “holes” in between these points
 
Physics news on Phys.org
Is this homework?

Does the particle do many consecutive steps, following these rules?

For a=0.5 it looks like you can approach any point in a binary way (reducing the distance by 2 with each additional step). I guess this can be generalized to other values of a.
 
Last edited:
mfb said:
Is this homework?

Does the particle do many consecutive steps, following these rules?

For a=0.5 it looks like you can approach any point in a binary way (reducing the distance by 2 with each additional step). I guess this can be generalized to other values of a.

Yes. The particle does do many consecutive steps. Could you be more explicit about the binary approach for a=0.5; I’m not quite understanding it. Thanks!
 
This is an iterated function system, altough a rather boring one in one dimension. Everything under "Properties" in the wikipedia article applies here. If I is the interval of interest (a-1,a) the main thing is to find out what f_1(I) ∪ f_2(I) is. (the union of the ranges of f_1 and f_2).
 
This is an iterated function system, altough a rather boring one in one dimension. Everything under "Properties" in the wikipedia article applies here. If I is the interval of interest (a-1,a) the main thing is to find out what f_1(I) ∪ f_2(I) is. (the union of the ranges of f_1 and f_2).
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
3
Views
10K
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K