What you seem to be attempting to define here is two coordinate systems, both simple Cartesian grids but one twice the size of the other. If so, the way you are writing it is completely wrong.
The idea is that any point can be identified by coordinates in either system. What you need to do is think of a point and write down its coordinates in both systems. Then another point and another and another - and then you have to figure out a general rule for how the ##x^1## coordinate of a point is related to the ##x'^1## and ##x'^2## coordinates of the same point in the other system, and how the ##x^2## coordinate of the point relates to its primed coordinates. In your case this is easy: ##x^1=2x'^1## and ##x^2=2x'^2## (or possibly divided by two depending which system you intended to have the larger grid). In the case
@PeroK is urging you to consider in #18 the relationships are more complex but you can see that what his maths does is take ##r,\theta## coordinates and expresses the same point in Cartesian coordinates.
You can't have vectors yet. First you need to specify your basis vectors. There is a lot of formalism to this that I'm not going to try to explain, but will be a bit sloppy. What I presume you have done is defined a unit vector ##\mathbf{i}## that points in the direction of increasing ##x^1## coordinate and a unit vector ##\mathbf{j}## that points in the direction of increasing ##x^2## coordinate, and you intend ##V=(1,2)## to mean that there is a vector at some point that can be written as ##\mathbf{j}+2\mathbf{j}##.
Note that this technique of using basis vectors that point along the direction of the coordinate grid is often extremely convenient (it's called a coordinate basis), but it is not the only way of picking basis vectors and other systems are used!
You have your slashes the wrong way round in the LaTeX, by the way - you need \, not /. I fixed them in the quote.
We've written down the relationships between the two coordinate systems so you should now be able to write the partial derivatives. Then you can apply your formula to your vector whose components are (2,1) in the unprimed coordinate basis to calculate its components in the primed coordinate basis. You should also be able to tackle PeroK's polar coordinate example.