I Reichenbach Synchronisation: Proving i=r

wnvl2
Messages
62
Reaction score
14
I use Reichenbach synchronisation. The one-way speed of light (OWSOL) in the x and y-direction is ##\frac{c}{2\epsilon}## and in the reverse direction it is for both ##\frac{c}{2(1-\epsilon)}## such that the average round trip speed of light is ##c##. For any choice of ##\epsilon## the physical laws should remain the sames as for ##\epsilon = \frac{1}{2}##.

My goal is to prove that the angle of incidence equals the angle of reflection. When using Huyghens it is obvous that I get a different result.

How can I prove ##i = r##?
mirror.png
 
Last edited:
Physics news on Phys.org
I use units where ##c=1## and Anderson coordinates so ##\kappa=2 \epsilon-1##. The transform between Minkowski coordinates (lower case) and Anderson coordinates (upper case) is: $$ t=T+\kappa X$$ $$x=X$$ $$y=Y$$ $$z=Z$$

So, in the Minkowski coordinates we can write the equation of an ingoing null geodesic as $$r^\mu(t,x,y,z) = \left( \lambda, -\frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$ for ##\lambda<0## and the equation of an outgoing null geodesic as $$r^\mu(t,x,y,z) = \left( \lambda, \frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$ for ##0<\lambda##.

Then transforming from the Minkowski coordinates to the Anderson coordinates we get $$r^\mu(T,X,Y,Z) = \left( \lambda + \frac{\kappa\lambda}{\sqrt{2}} , -\frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$ and $$r^\mu(T,X,Y,Z) = \left( \lambda - \frac{\kappa\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$

So the transformation does not affect the spatial coordinates, just the temporal coordinate. So the angle is the same in both cases.
 
  • Like
Likes cianfa72 and wnvl2
Do you have a link about "Anderson coordinates"?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top