B Relating displacements in a pulley system

AI Thread Summary
In the discussion about a pulley system, a force \( F \) pulls a rope down by a distance \( dx_1 \), causing a mass \( M \) to rise by \( dx_2 \). The energy conservation principle is applied, leading to the equation \( Tdx_1 = 2Tdx_2 - Mg dx_2 \). This is explained by noting that the energy input from the force \( F \) translates to tension \( T \) in the rope. The derived relationship simplifies to \( dx_1 = (2 - \frac{Mg}{T}) dx_2 \), but there is confusion about whether this can be simplified to \( dx_1 = 2 dx_2 \) based on rope conservation principles. The discussion seeks clarification on the conceptual understanding of these relationships.
burian
Messages
64
Reaction score
6
> The set up: At left end, the rope is pulled down with a distance $dx_1$ by a force of constant magnitude $F$, the mass of $M$ is wrapping around by rope on the right and moves up by a distance $dx_2$ due to this. Problem: Find relate the two displacements.

I thought of applying energy conservation, we put in energy $Tdx_1$ into the system and we add up the energy induced on the rest of the system. Noting that $F=T$,

$$Tdx_1= 2Tdx_2 - Mg dx_2$$

**Explanation for left side** : We input an energy of $F \cdot dx_1$ when we pull the rope by$dx_1$ with force $F$, since $F=T$, the energy is just $T dx_1$

**Explanation for right side :** The mass is pulled up by $dx_2$, this goes into kinetic energy of the body, this kinetic energy can be written using the work energy theorem as the external forces dotted with $dx_2$, $(2T-mg) \hat{j} \cdot (dx_2 \hat{j})= (2T- mg) dx_2$

This simplifies to:

$$ dx_1 = (2- \frac{Mg}{T} ) dx_2 \tag{1}$$
But, if we go by the differential conservation of rope, we find that $dx_1 = 2 dx_2$ is it possible to simplfy eqtn (1) into this, or have I done something conceptually wrong?
 

Attachments

  • Tu1uS.png
    Tu1uS.png
    92.6 KB · Views: 140
Physics news on Phys.org
Not sure why inline latex is not working..
 
You need to use double $ sign.
$$F=T$$
 
bump
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top