Relating the entropy of an ideal gas with partial derivatives

Click For Summary
The discussion focuses on relating the entropy of an ideal gas to partial derivatives and the extensible properties of the system. Participants explore the application of Euler's homogeneous theorem to derive relationships involving energy, entropy, volume, and particle number. Key equations are presented, including the connection between entropy and energy changes, leading towards the Gibbs-Duhem equation. The importance of rewriting terms using differential relationships is emphasized for clarity in understanding these concepts. Overall, the conversation aims to clarify the mathematical framework linking thermodynamic properties.
Mayan Fung
Messages
131
Reaction score
14
Homework Statement
For an ideal gas, use ##dE=TdS-PdV+\mu dN## to prove
1. ##V(\frac{\partial P}{\partial T})_{\mu} = S##
2. ##V(\frac{\partial P}{\partial \mu})_T = N##
Relevant Equations
##dE=TdS-PdV+\mu dN##
It looks very easy at first glance. However, the variable S is a variable in the given expression. I have no clue to relate the partial derivatives to entropy and the number of particles.
 
Physics news on Phys.org
Using the extensible properties of the system as variables, we know that ##E (x \lambda) = \lambda E(X)## (Homogeneous function of degree a=1), so that we can say

##x * \nabla f = a f## (Euler's homogeneous theorem), where ##x = (x_{1},x_{2},...,x_{n})## is the vector with the variables.

So that
$$S( \partial E/ \partial S ) + V ( \partial E/ \partial V)+ N (\partial E/ \partial N )= a * E$$
$$ ST - PV + N \mu = E$$

The rest i think you can go on, eventually you will get the Gibbs Duhem equation
 
  • Like
Likes Mayan Fung and etotheipi
Just to add to what @LCSphysicist wrote, first try to re-write each term on the RHS according to ##x\mathrm{d}y = \mathrm{d}(xy) - y\mathrm{d}x##.
 
Thanks! This makes me recall the fact that ##G=\mu N## and ##G=U-TS+\mu N##
 
Mayan Fung said:
Thanks! This makes me recall the fact that ##G=\mu N## and ##G=U-TS+\mu N##
Careful, it's ##G := U -TS + pV = \mu N##
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
1
Views
2K
Replies
19
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
446
  • · Replies 1 ·
Replies
1
Views
2K